
A Novel Objective Reduction Algorithm Using Objective Sampling
for Many-Objective Optimization Problems

Minghan Li 1, Jingxuan Wei 1 and Long Zhao 1

1 Department of Computer Science, Xidian University, Xi’an, China

Abstract. In the field of science and engineering, many problems are Many-objective Optimization
Problems (MaOPs), which have more than three objectives. The main difficulty of MaOPs is the true Pareto
front is hard to get due to the low selection pressure. However, for some MaOPs, we can reduce the number
of objectives to get the non-redundant objectives. In this paper, a novel fast objective reduction algorithm is
proposed. Different from other objective reduction algorithms, this algorithm uses a sampling method to get
the relationships between objectives by calculating objectives’ improvements. Then, a fast procedure is used
to omit the redundant objectives. Finally, experiments show that the proposed algorithm is effective.

Keywords: many-objective optimization, objective reduction, soft computing, intelligence computation

1. Introduction
Many real-world optimization problems are Multi-objective Optimization Problems (MOPs), and many

MOPs have more than three objectives, which are called Many-objective Optimization Problems (MaOPs).
Most of the proposed Multi-Objective Evolutionary Algorithms (MOEAs) use the Pareto-dominance relation
to compare solutions of the population [1]-[3]. However, their search ability is severely deteriorated when
the number of objectives increases, especially in solving MaOPs [4]. The main challenge is, when the
number of objectives increases, the proportion of non-dominated solutions increases rapidly. It means that
almost all solutions become non-dominated. This makes the search ability very poor. Nevertheless, the
recently proposed many-objective algorithms may not effectively handle MaOPs with more than over 15
objectives [5].

Fortunately, many real-world problems have redundant objectives. That is to say, we can try to remove
the redundant objectives to improve the search ability. In recent years, much work has been done to remove
the redundant objectives, e.g., [6]-[9]. However, these existing algorithms have some limitations, such as
needing non-dominated solutions by using an evolutionary algorithm and high computational cost.

In order to address the limitations, this paper proposes a new objective reduction algorithm. By sampling
the objectives and using a fast reduction selection method, non-redundant objectives are obtained.
Experiments show that the proposed algorithm works efficiently and successfully.

2. Problem Definition

2.1. Problem Definition
Many-objective Optimization Problems
Without loss of generality, a multi-objective optimization problem can be described as (1) [10].

min � � = �1 � ,�2 � ,…,�� � �

�.�. � ∈ Ω
1

 Corresponding author. Tel.: +8613891994573.
E-mail address: wjx@xidian.edu.cn

713

Proceedings of 2018 the 8th International Workshop on Computer Science and Engineering

(WCSE 2018)

ISBN 978-981-11-7861-0

Bangkok, 28-30 June, 2018, pp. 7 13-7 17

admin
打字机文本

admin
打字机文本
 doi: 10.18178/wcse.2018.06.117

admin
打字机文本

where x = �1,�2,…,�� is the decision vector, Ω is the search space, �� � is the i-th objective function in the
objective space. We call the problem many-objective optimization problem when the number of objectives is
more than three.

Pareto dominance
A solution x = (�1,�2,…,��) is said to dominate (denoted by ≺) another solution y = (�1,�2,…,��) if and

only if f(x) is partially less than f(y) . That means, ∀m ∈ {1,…,�} , we have ��(�) ≤ ��(�) and ∃m ∈
{1,…,�}, where ��(�) < ��(�).

Pareto optimal solution
A solution � = (�1,�2,…,��) is said to be optimal solution if and only if there is no � = (�1,�2,…,��) that

� dominates � with respect to solution space.
Pareto front
Given MOP f(x) and its Pareto optimal solution set P, the Pareto front is PF={f(x),x∈P}.

2.2. Related Work
Deb and Saxena propose PCA-NSGA-II [6]. The eigenvalues and corresponding eigenvectors of the

correlation matrix are used to identity the most important conflicting objectives which should not be
removed. This algorithm relies on the non-dominated solution set obtained by MOEA to compute the
correlation matrix.

Brockhoff and Zitzler propose a new definition of conflict which aims at finding a subset of the original
objectives [7]. A greedy and an exact algorithm were proposed to solve the k-EMOSS and the δ-MOSS
problems. However, its time complexity is quite high, which limits its practical applications.

Singh et al. propose the PCSEA [8]. The authors use boundaries of the Pareto front called corner
solutions by which the true dimensionality of the Pareto front can be predicted. However, it still needs to get
the non-dominated solutions and takes a high computational cost.

Jaimes et al. proposed an unsupervised feature selection technique to remove the redundant objectives
[9]. This method also uses a correlation matrix of a set of non-dominant solutions to measure the conflict
between each pair of objectives. The limitations of this algorithm are this algorithm needs to artificially
specify a neighborhood size q for clustering and it also relies on non-dominated solutions.

3. Proposed Reduction Algorithm
First, we sample the objectives and obtain � (� is the number of objectives) data points that represent

objectives’ gradient information. Second, we analyze the� data points and get the non-redundant objectives.

3.1. Sample the Points
This paper presents a novel approach to obtain the relationships between objectives by sampling them.

The procedure to obtain data points is as follows: first, initialize � decision vectors randomly distributed in
objective space. Second, calculate objective values by above � decision vectors and obtain objective values
matrix �,

A =
�1 �1 ⋯ �1 ��
⋮ ⋱ ⋮

�� �1 ⋯ �� ��
2

where, each row of matrix � represents � values of each objective and each column of matrix represents �
objectives’ values of one sampling decision vector �. Third, give a tiny increment to each decision vector �
in every dimension, ��th = �1 + �,�2 + �,…,�� + � . We calculate objective values by above � increased
sampling decision vectors and obtain matrix � of objective values.

B =
�1 ��th1 ⋯ �1 ��th�

⋮ ⋱ ⋮
�� ��th1 ⋯ �� ��th�

�

Last, we obtain matrix � by � − �. To each value ��� in matrix C, if ��� > 0, then set it to 1; if ��� < 0,
then set it to -1. Each row of matrix � represents each objective’s gradient information in decision space and

714

we can take it as a high-dimensional point, which can approximately represent the objective. If the gradient
trends of two objectives are very similar, then we can delete an objective. The procedure of generating �
points that approximately represent� objectives is given in Algorithm 1.

3.2. Pick Out the Non-Redundant Objectives
After sampling the objectives, we have � points that represent objectives. In the following, this

algorithm proposes an approach to omit the redundant objectives. In information theory, the Hamming
distance between two strings of equal length is the number of positions at which the corresponding symbols
are different [11]. Let �� represent one point corresponding to one objective and �� represent another point
corresponding to another objective. Let ������ represent the Hamming distance between �� and �� . It is not
hard to see if ������ is relatively low, then the objective corresponding to �� might be a redundant objective.
Based on the analysis above, there should be a parameter � to judge whether the objective corresponding to
�� is a redundant objective. This parameter � is shown in (4),

R =
������
�

4

where � denotes the dimension of the point and it is also the times of sampling. If � is lower than the
threshold, the objective corresponding to �� is viewed as a redundant objective and it needs to be removed,
meanwhile, �� goes to the next point ��+1 instead of comparing with all other points, which reduces the time
complexity. The removal process is repeated until all points are calculated and examined, then we obtain the
non-redundant objectives. The process of picking out non-redundant objectives is shown in Algorithm 2. The
main loop of the proposed algorithm is described in Algorithm 3.

715

Algorithm 1: Obtaining data points

Input : decision matrix X of N decision vectors;

Output: data points Points;

1 A ← calculateFuncVal(X);

2 𝑋𝑛𝑒𝑤 ← tinyIncrement(X);

3 B ← calculateFuncVal(𝑋𝑛𝑒𝑤);

4 C ← B − A;

5 C ← normalization(C);

6 for each row ∈ C do

7 Points.add(row);

8 end

Algorithm 3: Main Loop

Input : decision matrix X of N decision vectors;

objectives Objs;

Output: non-redundant objectives NObjs;

1 Points ← obtainDataPoints(X);

2 NObjs ← obtainNonRedundant(Points, Objs);

Algorithm 2: Obtaining non-redundant objectives

Input : data points Points;

objectives Objs;

Output: non-redundant objectives NObjs;

1 Tem ← Points;
2 for each 𝑃𝑖 ∈ 𝑃𝑜𝑖𝑛𝑡𝑠 do

3 for each 𝑃𝑗 ∈ 𝑇𝑒𝑚 do

4 if 𝑃𝑖 is not 𝑃𝑗 then

5 𝐷𝑖𝑠𝑃𝑖𝑗
← calHammingDis(𝑃𝑖 , 𝑃𝑗);

6 R ← calRvalue(𝐷𝑖𝑠𝑃𝑖𝑗
);

7 if R ≤ ratio then

8 Objs ← deleteTheRedun(Objs, 𝑃𝑖);

9 Tem ← deleteP(Tem, 𝑃𝑖);

10 break;

11 end;

12 end;

13 end;

14 NObjs ← Objs;

15 end

4. Experiment Design

We adopt test problems DTLZ2(M) [12] and DTLZ5(I,M) [6] in the experiments, where 𝑀 is the

original number of objectives and 𝐼 represents the actual dimensionality of the Pareto front. The first

problem has no redundant objectives, and this can test whether the proposed algorithm could omit objectives

mistakenly. The second problem is a redundant problem. We use it to test the accuracy of obtaining non-

redundant objectives. In order to show the improvement of MaOPs after obtaining the non-redundant

objectives, we integrate the proposed objective reduction algorithm into NSGA-II [13] and NSGA-III [5],

and then we compare the evolution performance of DTLZ5(I,M) before-and-after omitting the redundant

objectives.

For obtaining points that approximately represent the objectives, we set the number of sampling points
for each objective to 2000, and the tiny increment � to each decision vector � is bound/2000 (where bound
is the range of decision variables and if range is infinite, set � to 0.01). A large number of experiments show
that the parameter threshold � = 0.0i is the best for most problems, which determines whether the objective
is viewed as a redundant objective. If � < 0.0i, then the objective is viewed as a redundant objective and it
is removed. As to compare the performance before-and-after omitting the redundant objectives, in NSGA-II
and NSGA-III, the population size is 100, the crossover probability is 0.9, the mutation probability is 1/�
(where � is the number of decision variables), and the number of evaluations is 200000.

5. Results

5.1. DTLZ2(M) and DTLZ5 (I,M)
The true non-redundant objective sets of DTLZ2(M) and DTLZ5(I,M) are shown in Table 1. After 20

times experiments on each DTLZ2(M) and DTLZ5(I,M) test problem, the success rates of the proposed
algorithm which represent the accuracy of obtaining the true non-redundant objectives are shown in Table 1.

Table 1: The Result of Test Problems

Problems Non-redundant objective set Success Rate

DTLZ2(5) {�1,�2,��,�4,��} 20/20

DTLZ2(7) {�1,�2,…,�i,��} 20/20

DTLZ2(10) {�1,�2,…,��,�10} 20/20

DTLZ5(3,5) {��,�4,��} � ∈ {1,2,�} 20/20

DTLZ5(4,7) {��,��,�i,��} � ∈ {1,2,�,4} 20/20

DTLZ5(5,10) {��,��,…,�10} � ∈ {1,2,…,i} 20/20

DTLZ5(7,15) {��,�10,…,�1�} � ∈ {1,2,…,�} 20/20

As shown in Table 1, none of objectives is omitted for DTLZ2(M) test problems, and the results of
obtaining non-redundant objectives for DTLZ5(I,M) are perfectly accurate. The results show that the
proposed algorithm does not omit objectives incorrectly for non-redundant problems and omits objectives
accurately for redundant problems. In the following, the proposed objective reduction algorithm is integrated
into NSGA-II, and an experiment of comparing the performance before-and-after omitting redundant
objectives is conducted.

5.2. Integrating the Proposed Algorithm
In this section, NSGA-II and NSGA-III are firstly used to solve the many-objective optimization

problem DTLZ5(5,10), which has redundant objectives. Then the proposed objective reduction algorithm is
integrated into NSGA-II and used to solve DTLZ5(5,10) again. By doing so, we will see whether the
performance will be better by omitting non-redundant objectives, and in turn, the contribution of this work is
demonstrated. The Inverted Generational Distance (IGD) that is a variant of GD [14] is used for above three
experiments. The smaller the IGD value is, the better the result is. The average IGD of above three
experiments after execution for 2000 times is shown in Table 2.

Table 2: Performance Before-and-after integrating the algorithm
MOEA Integrated? IGD
NSGA-II No 120.4
NSGA-III No 0.417
NSGA-II Yes 0.393

From Table 2, we see that before integrating the proposed objective reduction algorithm, traditional
MOEA as NSGA-II will deteriorate the search ability to converge towards the Pareto front, and its IGD is
120.4. While after integrating the proposed algorithm, NSGA-II’s IGD is greatly reduced to 0.393, which is

716

even better than NSGA-III’s result. So it proves the objective reduction algorithm is a good approach to
improve the search ability for MaOPs.

6. Conclusions and Future Work
The goal of this paper was to investigate a novel objective reduction algorithm for Many-objective

Optimization Problems. Experimental results showed that the goal was successfully achieved by developing
a new sampling approach to get the relationships between objectives, and a procedure to pick out non-
redundant objectives. With the non-redundant objectives, the selection pressure of population with MOEAs
is higher and we can ease the search processes. In the future, we consider using other approaches to pick out
the non-redundant objectives from the sampling points. It is also interesting to use other techniques to get the
relationships between objectives.

7. Acknowledgment
This work is supported by the national science foundation of China (jj0500120310).

8. References
[1] S. Bechikh, M. Elarbi, and L. B. Said, “Many-objective optimization using evolutionary algorithms: A survey,” in

Recent Advances in Evolutionary Multi-objective Optimization. Springer, 2017, 105–137.

[2] Maltese J, Ombuki-Berman B M, Engelbrecht A P, “A scalability study of many-objective optimization
algorithms,” IEEE Transactions on Evolutionary Computation, 22(1), 2018, 79-96.

[3] Bao C, Xu L, Goodman E D, et al. A novel non-dominated sorting algorithm for evolutionary multi-objective
optimization[J]. Journal of Computational Science, 2017, 23: 31-43.

[4] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-objective optimization: A short review,” in
Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence). IEEE
Congress on. IEEE, 2008, pp. 2419–2426.

[5] K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using reference-point-based
nondominated sorting approach, part i: Solving problems with box constraints.” IEEE Trans. Evolutionary
Computation, vol. 18, no. 4, 2014, 577–601.

[6] K. Deb and D. Saxena, “Searching for pareto-optimal solutions through dimensionality reduction for certain large-
dimensional multi-objective optimization problems,” in Proceedings of the World Congress on Computational
Intelligence (WCCI-2006), 2006, pp. 3352–3360.

[7] D. Brockhoff and E. Zitzler, “Are all objectives necessary? on dimensionality reduction in evolutionary
multiobjective optimization,” in Parallel Problem Solving from Nature-PPSN IX. Springer, 2006, 533–542.

[8] H. K. Singh, A. Isaacs, and T. Ray, “A pareto corner search evolutionary algorithm and dimensionality reduction
in many-objective optimization problems,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 4, 2011,
539–556.

[9] A. L´opez Jaimes, C. A. Coello Coello, and D. Chakraborty, “Objective reduction using a feature selection
technique,” in Proceedings of the 10th annual conference on Genetic and evolutionary computation. ACM, 2008,
pp. 673–680.

[10] K. Deb, Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, 2001, vol. 16.

[11] R. W. Hamming, “Error detecting and error correcting codes,” Bell Labs Technical Journal, 1950, vol. 29, no. 2,
147–160.

[12] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-objective optimization test problems,” in
Evolutionary Computation, 2002. CEC’02. Proceedings of the 2002 Congress on, vol. 1. IEEE, 2002, pp. 825–830.

[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: Nsga-ii,”
IEEE transactions on evolutionary computation, 2002, vol. 6, no. 2, 182–197.

[14] D. A. Van Veldhuizen and G. B. Lamont, “On measuring multiobjective evolutionary algorithm performance,” in
Evolutionary Computation, 2000. Proceedings of the 2000 Congress on, vol. 1. IEEE, 2000, pp. 204–211.

717

