
Algorithm of Automatic Train Operation System Based on
Reinforcement Learning

Yanmei Guo 1 , Ziheng Wu 1, Xiangxian Chen 1, Zhujun Ling 2

1 Department of Instrumentation Science and Engineering, Zhejiang University, Hangzhou, China
2 Zhejiang Train Intelligent Engineering Technology Research Center Co., Ltd

Abstract. Achieving good speed control is the key to the smooth operation of the automatic
driving system. In this paper, the image processing method in deep learning is introduced,
combined with the classic deep neural network algorithm, and the CNN is strengthened through the
reinforcement learning method. A speed controller with good tracking effect is designed. This method
enhances the universality of the fuzzy control method, meanwhile, it creatively puts forward the
idea of using the combination of neural network and reinforcement learning to achieve a good
effect of automatic train operation control.

Keywords: ATO control, reinforcement learning, CNN network.

1. Introduction
ATO (automatic train operation) is an important part of the control of train operation. Its primary goal is

to adjust the tractive force and braking force of train in real time according to the different operating
environments of train so as to realize the safe, reliable and efficient operation of train in accordance with
predetermined instructions. At the same time, a good automatic train operation system can also reduce
energy consumption, achieve high-precision speed and position control, and improve on-time train
punctuality and comfort [1]. The most important thing about ATO systems is speed tracking.

The construction ideas of ATO system are generally established by the train model, simulation
verification, control algorithms designed according to demand. Among them, the accurate mathematical
description of the running process of a train is the basis for realizing an ATO system with high efficiency and
good performance [2]. The train speed, the interaction between train and catenary, wheel-rail, air and others
are significantly aggravated. And the dynamic environment of train operation system is obviously enhanced.
The time-varying nonlinearity of train operation process is more obvious. And therefore, model is difficult to
apply to different operating occasions. In the future, it may even be possible to have complex train models
that depart from simple parametric methods.

At present, the research of automatic train control algorithm is quite common. The classic control
algorithm represented by PID cannot achieve the ideal control effect when the train operating conditions
change. For the time-varying train model, the control algorithm lacks flexibility and cannot satisfy our
demand. The train operation control method based on fuzzy control has no requirement for the mathematical
model of the controlled object and is able to solve the order or parameter requirements of the traditional
control algorithm to a certain extent, however, the control accuracy depends on design of the membership
function and language variables. Existing solutions do not have precise theoretical guidance in this section,

 Corresponding author. Tel.: + 86 17367078393.
E-mail address: gym12840@163.com.

705

Proceedings of 2018 the 8th International Workshop on Computer Science and Engineering

(WCSE 2018)

ISBN 978-981-11-7861-0

Bangkok, 28-30 June, 2018, pp. 7 05 -7 12

admin
打字机文本
 doi: 10.18178/wcse.2018.06.116

and usually rely on expert experience. As a result, their generalization ability to different train models don’t
work well.

The point of this paper lies in combining with the method of deep reinforcement learning, trying to put
forward a solution to enhance the generalization ability of fuzzy control thought. Through deep
reinforcement learning, the fuzzy control scheme is automatically generated for the existing train model, the
required target speed curve and the demand strategy to replace the design of traditional expert experience
and enhance the universality of fuzzy control. In this process, the control method of this paper introduces the
hot image representation method in deep learning to describe our state space, and uses the classical CNN
algorithm to get the corresponding output states, and then strengthens the CNN network through the
reinforcement learning method, and finally gets the best output based on the strategy we designed. The
method breaks away from the traditional fuzzy control based on the projection method designed of language
variables and membership function, and the image representation of the processing methods expand the input
state space. Finally, we enhance the generalization ability of the fuzzy control, thereby enhancing the
characterization ability.

2. Design of Train Simulator
Train is the control object of ATO system. The controlled input information is traction command and

braking command. According to Newton's law of mechanics, train operation equation of motion can be
established as follow:

�u
��
� ˈ፥

፥ � � ݑ �
� � �� � ��u � ��u�

(1)

Among them,u is the running speed of the train; � is the time; ˈ is the acceleration coefficient; ፥ is the
resultant force of the train; � is the traction / braking force of the train; � is the resistance to the train; �� is
the rolling resistance coefficient and the additional resistance ; �� is the other mechanical resistance
coefficient; �� is the external air resistance coefficient.

The train operation model can be represented by the following difference equation:
y k � �� � × � � ݑ � � � �� � × � � ݑ � � �� � × � � ݑ � � �� � � � � (2)

Among them, y k represents the measured value of the running speed of the train; � � represents the
input of the train running system, that is, the target traction / braking force; � �) is the noise;
�� � ,�� � ,�� � ,�� � are the time-varying parameter of train model.

3. Design of Train Target Curve
In order to ensure the smooth operation of the train, we need to design a train performance curve with

good performance so that the controlled train can track the target curve accurately and timely.
The target curve generally adopts traction-idler-braking mode conversion mode. In order to ensure the

smooth running of the train, the target curve should be as smooth as possible. Therefore, this paper uses the
quadratic curve to design the traction curve, braking curve and constant curve.

4. Reinforcement Learning and Train Control Principle
The study of introducing reinforcement learning into train control systems relies mainly on the following

two points:
A. Train Operation System is a complex time-varying system. Due to the high complexity, non-linearity,

basic resistance and additional resistance of train operation, many traditional control methods based on
mathematical models of high-precision numerical solutions cannot work well. Therefore, the current train
control is still under the supervision and scheduling of the conductor. The control method based on the
experience of the conductor is essentially the thought of fuzzy control.

B. According to the sampling speed and traction / braking force data of Hangzhou Metro Line 4, the
tractive / braking force of the train is not infinite accuracy, but distributed in a fixed discrete value. That is,

706

the existing train speed control can rely on increment of tractive/ braking force with limited precision.
Therefore, it should be feasible to select the discrete control output (state space) to complete the control of
the real train power system.

As summarized in B, a real-world train system outputs discrete control variables by combining the
conductor’s experience and the real-time status which is the current status and the established target (eg
following the target curve, fixed parking and so on). The role played by the conductor is an intelligent
control system, and it is also the agent in reinforcement learning that we introduce. Through the train
simulator designed in 2 and 3, the established target speed and the reinforcement learning algorithm, we
hope that the algorithm we have studied and improved can automatically generate agents that can handle this
objective autonomously in many iterations to replace the conductor control of train.

Fig. 1: Flow chart of reinforcement learning system.

We built the flow chart of reinforcement learning system, as shown in Figure 1. We need to give the
system a target and a strategy (target model & reward function), an environment simulator (train model), and
finally get an algorithm that can improve its decisions making ability by making our agent interact with the
environment and gain rewards. By iteratively iterating the above process, the algorithm allows rewards to
reach our setting value [3-4]. In the whole process, the agent doesn’t know the specific parameters or
mathematical expression of the train model, and the specific reward function. It only interacts with the input
and output of the train simulator to complete the learning process, which is the generation process of control
algorithms. This means that our algorithm is model free and strategy free, and we can choose the model and
strategy for input to generate the control algorithm. This point has great potential, which means that in the
future we can construct more complex, higher-order or fuzzy neural network models that are difficult to
control by traditional methods to simulate trains so as to obtain better generalized train model expressions or
develop end-to-end strategy based on our needs.

The above part details the flow chart of the whole reinforcement learning algorithm and the construction
of the train simulator. In the following, we will introduce how agent can update itself through the sequence
of {[state, reward, action]}.

Through the analysis in A and the observation in B, we can abstract the train operation into a Finite-state
Markov process. Each step can select an action in a finite set of actions. After the train system accepts the
action, the state transition occurs. At the same time, an evaluation R is given and jumps to the state ����.

The goal that a reinforcement learning system needs to achieve is to decide an optimal strategy to select
the corresponding output state for a given input state so that the total expected value of discount rewards will
be maximized in the future when the entire decision-making process is completed.

707

Under the action of strategy π, the value of state �� is:
�� �� � R π �� � γ ���� ∈�

� ��,��,���� �� ����� (3)

Where γ is the attenuation coefficient, which indicates the expected return of the current state which
discounted by the expected profit of the new state after the completion of the state transition.

The dynamic programming theory guarantees that at least one strategy �∗ makes the following formula
true [5]:

��∗ �� � max
�� ∈�

{ R π �� � γ ���� ∈�
� ��,��,���� ��

∗ ���� }� (4)

This lemma makes our selection of the best strategy equivalent to the solution of the best state function
�� �� . Once we determine the representation of the best state function, the best strategy is
�� � argmax

�� ∈�
{ � ����| ��,�� }.

Here we introduce the Q-Learning algorithm which is not to estimate the environment model, but
directly optimize an iterative Q function. Q-Learning algorithm proposed a method to update the Q value [6]:

Q ��,�� ← Q ��,�� � α(���� � γmax
����

� ����,���� ݑ �(��,��)) (5)

The algorithm is proved to converge to the optimal state function we neededݑ �� �� in an iteration.
Therefore, we design the Agent to implement the above algorithm, and in theory we can get the best control
strategy in train operation. Among them, R π �� is the reward_function in the flow chart. In simple
problems such as finite state problems, for example, maze maneuvers (eg, the input state �� belongs to
countable state space), the algorithm uses tables to store each state S� and the Q value owned by each of the
behaviors �� in this state S� . The whole algorithm keeps constantly updating the value of Q table, but the
running status of the train is often expressed by continuous values (for example, v, u, target (v) Etc.),in
which the state space cannot be counted, and a simple method of table updating is difficult to actual
operation.

Here we combine the idea of DQN [7] to abstract the train state into the image input, and then introduce
the CNN to complete the estimation of Q value of the image input state. Then self-learning and backtracking
of the network are realized by memory pool algorithm and experience playback algorithm. Finally, the
network can output results close to the best Q value.

5. Experiments

5.1. Design section
5.1.1 Image description

The following three sections describe how we can run an iterative algorithm of how we abstract the train
control problem into a flowchart (Figure 1). The strategy we use to abstract the train input state into an image
is shown in Figure 2 below.

Fig. 2: Image of input state.

(1) Parameter list: The image S� is generated from the parameter list as follows: {height = 80; width = 80;
�ݔ�݅� � = 0.05 (unit: number of samples); �uݔ�݅� = 0.05 (unit: number of samples); crash_limit = 0.3km / h}.

708

The image S� describes the target speed target_v between the sample point t and the sampling point (t +
width × �ݔ�݅� �). The target speed control error interval is 0.3km / h.

(2) Rendering method: The horizontal axis of the image is the sampling point (t ~ t + width × �ݔ�݅� �)
and the vertical axis is the velocity ((u�݅h-1 ~ u�݅h + height × �uݔ�݅�). The rendering of upper and lower
error interval of target speed- crash_limit/�݅ݔ�� uis 0(pixel value is 0), indicating that the current train speed
region, and the rendering of the rest of the image is the speed value of the point. The train particle rendering
is 255 (2 * 2 small squares, pixel value is 255).

According to the above description, we will render the target speed and the actual speed of the arbitrary
sampling point to the image at any time. The precision is controlled by parameter adjustment of
�ݔ�݅� � , �ݔ�݅� u . Our goal is to get the corresponding output based on the input image, so that the train can
always run within the feasible speed area.
5.1.2 Neural network construction

For our output state space, we abstract the output state space into the space described by ｛����ˈ�݅쳌h ,
��｝ , as described in Part B of Section 4. Our deep neural network design is shown in Figure 3. For any
input abstracted as the state image S� , we pass three convolutional layers, a pooling layer, two fully
connected layers, and finally get an output of length max�ˈ�݅쳌h , each of which describes the estimated Q
value corresponding action A� in this state S� form the network, and select the maximum Q value
corresponding to the action as the output.

Fig. 3: Convolution neural network.

5.1.3 Design of reward system of reinforcement learning
We use reward function to describe the reward system of reinforcement learning. Reward function

reflects the mapping of actual demand to control volume. For any input state S� and action A�, we can get the
next state S��� from the train simulator. The criteria for judging the behavior A� is as follows:

a. If the train is still within the target speed limit error in stateS���, reward is marked as �� (eg, �� = 0.2).
b. If the train deviates from the target speed limit error range in the state S��� , reward is denoted as ��

(eg, �� = -10).
c. If the train is still within the target speed limit error in stateS��� but its offset is shortened, reward is

marked as �3 (eg, �3 = 0).
d. If the train is still within the target speed limit error in S��� and the train speed is getting closer to the

target speed curve, reward is written as �4 (eg, �4 = 1.2-10 × abs (dv)).
We have formed a variety of reward strategies based on different combinations of parameters

{��,��,�3,�4}. In the following, several representative strategies are selected for comparison.

5.2. Experimental Results
According to the description of the above design, we can see that different reward parameter

combinations {��,��,�3,�4} will form different reward strategies, and we name them strategy A, B, C, D, E,
F, etc., as shown in Table I. Different action parameter combinations {����ˈ�݅쳌h,��} will also form different

reward strategy and action strategy, as the form of A-a, A-b, B-c, D-a and so on.

709

action strategies, we name them strategy a, b, c, etc., as shown in Table 2. Our strategy is combined with

710

Table 1: Reward strategies formed under different combinations of parameters {𝑎1, 𝑎2, 𝑎3, 𝑎4}

Parameter 𝑎1 𝑎2 𝑎3 𝑎4

Strategy A 0.2 -2 0 0.1

Strategy B 0.2 -2 0 1.2-10*abs(dv) (when dv<0.1)

Strategy C 0.2 -5 0 1.2-10*abs(dv) (when dv<0.1)

Strategy D 0.2 -10 0 1.2-10*abs(dv) (when dv<0.1)

Strategy E 0.2 -20 0 1.2-10*abs(dv) (when dv<0.1)

Strategy F 0.2 -5 0 2.2-20*abs(dv) (when dv<0.1)

{𝑚𝑎𝑥𝑎𝑐𝑡𝑖𝑜𝑛,𝐾𝑈}

Parameter max𝑎𝑐𝑡𝑖𝑜𝑛 K𝑈 S
Strategy a 5 5 [-10,-5,0,5,10]

Strategy

b

3 10 [-10,0,10]

Strategy c 7 3 [-9,-6,-3,0,3,6,9]

When the train speed is beyond the acceptable control error range, we will restart the train running status

and select a certain sampling point in the train model as a new initial point randomly, and compare the target

speed and target thrust with a certain offset as the initial state, which is:

{
𝑣 ± 𝑚(𝑚 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑠𝑝𝑒𝑒𝑑)
𝑢 ± 𝑛(𝑛 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑡ℎ𝑟𝑢𝑠𝑡)

We select reward strategy A and action strategy a, b, c to make three combinations. We get a different

average length under different initial conditions for training. The impact of initial conditions on different

strategies is shown in Table 3.

the initial state Strategy A&a Strategy A&b Strategy A&c

{𝑣 ± 0.3, 𝑢 ± 1} 186 45 117

{𝑣 ± 0.3, 𝑢 ± 10} 135 35 116

{𝑣 ± 0.1, 𝑢 ± 1} 250 70 119

{𝑣 ± 0.1, 𝑢 ± 5} 204 52 151

It can be seen from the table that the steps obtained by the same strategy are different in different initial

states of train, and the steps obtained by different strategies are different in the same initial state. When the

speed deviates from a certain distance, the smaller the deviating distance of the thrust, the larger the step size

it obtains. However, when the thrust deviates from a certain distance, the smaller the velocity deviation

distance, the larger the obtained step size. It can also be observed that the decrease in speed offset distance

(eg, from 0.3 to 0.1) increases the step size by a greater amount than the decrease in thrust offset distance (eg,

from 10 to 1), so the effect of speed deviation is greater than the thrust deviation.

Fig. 4: A group of better performance output state diagram - velocity curves.

Table 2: Action strategies formed under the different parameters combination

Table 3: Compare of the average length on different action strategies and the same reward strategy

711

After our selection of parameters and iterative training, we can choose some better strategies. The

velocity curves of controlled by these strategies are shown in Figure 4. In this strategy, the output states

perform well. As can be seen from the figure, the speed is different in the initial state, all deviating from the

target speed by a certain distance. After multiple operations, the speed returns to the range where is close to

the target speed. In the speed section shown in the figure, the maximum fluctuation range is between

[69.70km / h, 70.20km / h],and the volatility range is [0,0.43%]. At the same time, we can also see from the

figure that in the 500-step range, the speed is controlled by the system within a reasonable error range, and

there is no trend of increasing speed error.

To demonstrate the effectiveness of our strategy, we tested the stochastic strategy and the fixed strategy

respectively. The experimental results show that the speed of random strategy generation shows the trend of

wireless expansion of error within 30 steps, which cannot achieve good speed tracking. We come up with a

set of fixed strategy generation maps, as shown in Figure 5. The fixed strategy shown here refers to the

traditional expert experience based on the fuzzy control idea. For example, the speed is greater than the

target speed, we step on the accelerator, the speed is less than the target curve, and we increase the throttle. It

can be seen from the figure below that the speed range remains within the range of [66.0km / h, 71.5km / h]

over the 400-step range and the volatility interval is [0,5.7%], which is far beyond the speed fluctuation

range under our strategy. At the same time, the speed error shows a divergent trend. It can be predicted that

as the step size increases, the speed error will increase.

Fig. 5: A set of fixed strategy generation graphs - velocity curves.

5.3. Experimental Summary

(1) Discrete control is sensitive to the initial conditions, and our strategies work well.

(2) The train model is very unstable. If small deviations cannot be controlled quickly, the model will

quickly no longer used or the train operation will collapse.

(3) Our algorithm is still very rough. A lot of parameters and strategies can be adjusted. And we can also

choose to test the image of variable speed, which it is not going to be placed in this paper. (Source code can

be found in github)

6. Conclusion

In this paper, an automatic train control algorithm based on reinforcement learning is proposed, and a

controller with good control effect is designed. The method of this paper gets rid of the traditional train

control algorithm based on the precise train model. Combining the idea of fuzzy control with the method of

reinforcement learning, the train speed is precisely tracked. At the same time, we also introduced the method

of image from the deep learning to describe our state space. Then we use classical CNN algorithm to get the

corresponding output state, and strengthen CNN network by reinforcement learning, and finally complete the

712

best Output according to our strategy. As CNN training is very time-consuming, the current network has not

yet reached the optimal ideal effect and needs to be improved through continuous training.

7. Acknowledgements

This topic comes from 2015BAG19B03, the 2015 national science and technology support project

jointly undertaken by Zhejiang University and Zhejiang Train Intelligent Engineering Technology Research

Center Co., Ltd.

8. References

[1] Yang Gang, Liu Mingguang, Yu Le.Nonlinear predictive control of high-speed train operation process [A] .Acta

Iron Chrysotment, 2013,35 (8): 16-21

[2] Zhang Kunpeng.Multi-model modeling and predictive control of high-speed EMUs [D] .East China Jiaotong

University, 2012.

[3] LI Ning, GAO Yang, LU Xin, et al.A learning agent based on reinforcement learning.Computer Research and

Development, 2001,38 (9): 1051 ~ 1056.

[4] L P Kaelbling,M L Littman,A W Moore.Reinforcement Learning:A survey.Journal of Artificial Intelligence

Research,1996,4:237~285.

[5] Sutton R S, Barto A G. Reinforcement Learning: An Introduction[J]. Machine Learning, 2005, 16(1):285-286.

[6] Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning[J]. Nature,

2015, 518(7540):529.

[7] Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou Daan Wierstra Martin

Riedmiller. Playing Atari with Deep Reinforcement Learning[J]. Computer Science, 2015.

