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Abstract. In this paper, a novel sequence feature extraction method based on the deep learning network is 
proposed for protein secondary structure prediction. This deep learning architecture, mainly composed of two 
layers stacked auto encoder and a fully connected softmax classifier.  Position-specific scoring matrix (PSSM) 
profiles are used as raw data for feature extraction. The stacked auto encoder structure could learn the second 
order feature parameters by the importance on massive PSSM profiles of polypeptide unaware of secondary 
structure, which does improve the performance of the encoder in general. Compared to the representation of 
original PSSM profiles, the extracted feature not only reflects the evolutionary information, but also the 
sequence interaction of residues. Finally, the extracted features are fed into a fully connected softmax layer as 
a classifier for the secondary structure prediction. The experimental results indicate that this method can 
achieve an overall accuracy (Q3) above 78% on 25PDB. This is comparable with that of the art-of-the-state 
PSSM+SVM methods, at the same time, in relatively short prediction period.   

Keywords: Sparse auto-encoder, Stacked auto encoder, Protein secondary structure prediction, Deep 
learning neural network.  

1. Introduction  

Protein structure prediction is very critical for analyzing protein function and its applications such as 
drug design [1]. Furthermore, protein secondary structure prediction plays an important role in the further 
three-dimensional structure analysis. It is widely accepted that the amino acid sequence (AAs) contains 
sufficient information to determine the three dimensional structure of a protein, however, it is extremely 
difficult to directly predict protein structure based on a whole sequence of amino acid residues [2]. Hence, 
prediction of protein secondary structure from sequence-known protein by a fast computational method is 
very fundamental and challenging [3]. In the past decade, numerous efficient methods had been proposed, 
such as, methods based on probabilistic model (HMM) [4, 5], dynamic Bayesian networks (DBN) [6], or 
machine learning-based methods mainly including neural networks (NN) [5, 7] and support vector machines 
(SVM) [8, 9, 10]. However the accuracy of prediction was below 80% [11], which has not been improved in 
the past decades. In general, the feature extraction of amino acid sequence information is a key step to 
improve the performance of predicting protein secondary structure. Artificial designed statistical features 
based on contents, such as the frequency of each AA（amino acid) in given proteins [8], normally can only 
achieve low prediction accuracy since they ignore the sequential order of AAs and the relationships among 
the distant AAs. According to Q. Dai et al. [12], the position based features and the contents based features 
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must work closely to make significant and complementary contributions. To date, more and more feature 
extraction and feature selection methods were proposed to offer diversity and inherence features for this 
prediction problem [13, 14, 15, 16]. 

The position-specific scoring matrix (PSSM) [13] which encodes evolutionary information as the profile 
of the protein sequence has been proven most helpful for building prediction model by SVM [13,17,18]. 
However, when low-homology datasets with pairwise sequence identity below 40% were tested, these 
methods were not effective any more. For instance, the reported overall accuracy for the widely used dataset 
25PDB whose sequence homology is about 25%, were about 60~70% only [12,18]. The compound pyramid 
model adopts a gradually refining, multi-hierarchical configuration, in which the layers focus on independent 
functions, so that this model gets the higher prediction accuracy comparatively  than before [7, 10, 11, 19], 
however, beyond 80% of Q3 is difficult. Recently, much attention has been paid to use deep learning 
network to predict protein secondary structure, including Porter 4.0, SCORPION, SPIDER 2, and DeepCNF 
[20, 21, 22, 23, 24, 25, 26]. Deep learning networks are the revolutionary development of neural networks, 
and the results show that can create more powerful predictors. The deep neural networks also can give the 
promise of self-taught feature learning from massive amounts of unlabeled data, which means more 
inherence information for protein structure could be encoded into the descriptors. Sparse auto encoder is 
developed from neural network for special self-taught feature learning. Using sparse auto-encoder for 
unsupervised learning is not new, however, for protein secondary structure protection is rarely in literatures 
at present.   

In theory, the AAs of a whole protein will determine the three dimensional structure of a protein. In 
practice, a secondary structure prediction problem is usually formulated under the concept of slide window 
[7, 20]. By far, still no researchers had claimed that how long the window size should be enough for the 
prediction of the center position.  The longer the sequence is, the more information is involved, however, at 
the same time more interferences are unavoidable. Similar machine learning approaches to secondary 
structure prediction have reported success using a variety of window sizes from 13 to 21 [7,20]. The window 
sizes from 11 to 25 were tested in [20], and the authors found that the average evaluation scores generally 
increased to a window size of 19, and then sharply dropped off for windows larger than 20. 

In this research, a long window feature extraction method is proposed based on the deep learning 
architecture to extract the new presentation of protein sequences. The extracted new presentation is expected 
to reflect reasonably more related information of AAs. Compared to the original PSSM profile, the new 
presentation of our proposed sequences features extraction (SFE) method can obtain comparable results than 
before as well as relatively short-term prediction period. 

2. Feature Extraction Based on Deep Learning Architecture  

In this study, a sequences feature extraction (SFE) method is proposed for the prediction of protein 
secondary structure. It is a deep learning architecture that takes advantages of self-taught feature learning.  In 
this section a clear explanation about the data and methods is given to every detail. 

2.1. Datasets  

Datasets used in this paper include: RS126 [27] that comprises 126 protein of about 25% sequence 
identity; 25PDB [28] that comprises 1672 proteins of about 25% sequence identity; and CB513 [19] that 
comprises 513 proteins of less than 25% sequence identity. All above protein datasets are encoded in PSSM 
by PSI-BLAST [30]. 

PSSM introduces evolution information of protein for prediction model learning. The theoretical basis is 
that the most reliable way to predict protein secondary structure is homologous with a known structural 
protein [13]. Each protein sequence is used as a seed to search and align homogenous sequences from 
NCBI's NR database (ftp://ftp.ncbi.nih.gov /blast/db/nr) by the iterative databank-searching tool BLAST 
(PSI-BLAST) (http://blast.ncbi.nlm.nih.gov/Blast.cgi) with three iterations and a cut off of E-value 0.001. In 
our experiments, BLOSUM62 Substitution Matrix is the adopted measures as a score matrix to reflect the 
similarity among the amino acids. Finally, the obtained PSSM profile of a protein sequence is an L×2 0 
matrix, in which L is the length of the protein instance.  
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A secondary structure prediction is usually formulated under the concept of the sliding window. The 
secondary structure of the center position can be predicted by the information extracted from amino acid 
sequence inside the window. The head-part and tail-part of one protein sequence is extrapolated by reflecting 
across edge method so that these amino acids located at head and tail parts of protein sequences can be 
predicted by the same window size. Under the concept of the sliding window, a whole protein sequence with 
L amino acid is split in L non-overlapping intervals of n base pairs for the study. n is the window size. 
Protein secondary structure is assigned from the experimentally determined tertiary structure by Dictionary 
of Secondary Structure of Proteins (DSSP) [14]. The defined contents of the secondary structures using the 
DSSP file of the proteins have eight classes: H (α-helix), G (310-helix), I (л-helix), E (β-strand), B (β-
bridge), T (turn), S (bend) and C (rest random coil). The H, E and C can be denoted asα-helix, β-strand 
and all other elements including coil. This strategy has been widely accepted in secondary structure 
prediction problems [7, 12, 28]. 

2.2. Self-taught Feature Learning Based on the Sparse Auto - encoder  

In order to improve the accuracy of the prediction, one method is to get more labeled data, but this will 
be expensive. Sparse auto encoder is developed from neural network for special self-taught feature learning 
[29]. So we try to obtain and learn generative features from massive amounts of unlabeled data. 

2.2.1 Sparse Auto Encoder  

Given a set of unlabeled training examples {x (1), x (2), x (3),……}, where x(i)∈Rn. x is a training 
sample in n dimension. i is from 1 to m and m is the number of the samples. The architecture of an auto 
encoder is a three layer neural network, yet the output layer nodes are set as the same as the input layer nodes. 
It is an unsupervised learning algorithm. Figure 1 shows the theoretical structure of a sparse auto encoder.  

 
Fig. 1: The theoretical illustration of a sparse auto encoder with 3 layers，from left to the right being: input layer, 

hidden layer and output layer. Specially, output units are equal to the input units, as ˆ , 1,2,3,4 .i ix x i  ，  In this 
paper, the input layer is L×20 units for PSSM patch; The number of the hidden layer is 400 and the output layer is the 

same as the input layer. 

As same as the neural network with one hidden layer, auto encoder will find a way of defining a complex, 
non-linear form of hypotheses hW,b(x), with parameters W, b that are fitted to training  data. 

,
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W is a s2×s1 transfer matrix. s1 is the number of the nodes in the first layer and s2 is the number of the 
nodes in the second layer. Specially, W1, b1 is parameters transfer input values of n dimensions into the 
hidden layer (2). The activation function of the hidden layer is the sigmoid function, which can map all 
values appeared in hidden unit to [0,1] (3).  zj is the values appeared in the j-th hidden unit.  
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In figure 1, W1,b1 are parameters mapping input data into hidden nodes values z, and W2,b2 are transfer 
parameters mapping hidden values f(h) into output values x . This network applies back propagation, by 
setting the output layer values to be equal to the inputs. I.e., it uses y(i) = x(i). The auto encoder uses the back 
propagation to perform gradient descent exactly on the objective sparseJ , )b（W  that contains 3 terms: the squared 
error term, the weight decay term, and the sparsity penalty which imposes a sparsity constraint on the hidden 
units.   
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In (4), the weight decay parameter λ controls the relative importance of the two terms. 
Parameter   controls the relative importance of the two terms in (5). A sparsity parameter  is typically a 

small value close to zero (say =0.05 ).  j is the average activation of hidden u.t over all train dataset . When 

j  , ( || )jKL   equal to 0. In other words, we would like the average activation of each hidden 
neuron to be close to 0.05. Training the auto encoder is the procession of calculating the optimal W, b, and by 
minimizing sparseJ , )b（W . In practice, gradient descent algorithm L-BFGS usually can work fairly well and is 
used for this optimization problem in this paper. 

2.2.2 Features Extraction Based on Two Stacked Autoencoders  

 
Fig. 2: The training of the second layer of a stacked autoencoder. The input raw data is from the hidden layer of the first 

autoencoder, and that data also link to the output layer as: , 1,2,3,4 .i ih h i  ，  

From observation, one knows the adjacent secondary structure has obvious interdependence. A stacked 
auto encoder used in this paper compose of  two layers, auto encoders in which the outputs of the first  layer 
are wired to the inputs of the successive layer. The greedy layerwise approach is the way we used here to train 
our stacked autoencoder. By slide window concept, PSSM profiles are the raw data feed to the input layer of 
the first auto encoder, and the output layer of this autoencoder is set as the same as the input(Figure 
1).Through training this auto encoder, the hidden layer recover the first order feature h1 (1~400) of the L 
windows PSSM, and the output layer is throw away.Then the first order features h1 () extracted features is 
used as the raw data to train the second autoencoder(Figure 2), and after training, the second order feature h2 () 
will appear at the hidden layer of the second layer, and the output layer which is set equal to the input is also 
thrown after training.  

The features from the stacked autoencoder can be used for classification problems by feeding them to a 
softmax classifier. These learned features could encode the probability distribution of longer polypeptides 
through learning massive unlabeled polypeptides, and this probability distribution can be most consist with 
natural scenes [30]. 

2.3. Classification Layer  
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Finally, we combine these two trained auto encoder layers together to form a stacked autoencoder with 2 
hidden layers and a final softmax classifier layer capable of classifying the three types of protein secondary 
structure: H, E, C (Figure 3). The softmax function is considered as the multi-class generalization of the 
logistic sigmoid function (3). To adjust the weights for training, a back propagation algorithm called fine 
tuning is used which is an application of the gradient descent algorithm. According to fine tunning, the 
weights in the network will move along the negative gradient of the response logistic sigmoid function to get 
the fastest way for adjustment. From our experiments, the prediction accuracy results got great improvement 
after fine tunning procession.  

 
Fig. 3: The whole deep learning network with a fully connected softmax classification layer. The units of the input layer 
are L×20 for L-polypeptides in PSSM patch. The first hidden layer (400 notes) is the first order features and the second 

layer (400 notes) is the second order features.  The output layer is a fully connected classification layer with three 
output nodes. 

3. The Experimental Results and Discussions 

Our experiments are implemented in MATLAB 2014a, which runs on an Intel® Core™ i7-4790 3.60 
GHz CPU with 32 GB RAM. The generated PSSM matrix of RS126, CB513, and 25PDB within the search 
scope of nr datasets are captured as original protein sequence input data, as well as the protein secondary 
structure of the three states are respectively H [1, 0, 0], E [0, 1, 0] and C [0, 0, 1]. The concept of sliding 
window is used for pilling up these PSSM as protein sequence samples, and the window sizes used in this 
experiment are from 13 up to 35. Protein secondary structure prediction is usually evaluated by Q3, which 
measures the percent of residues for which 3-state secondary structure is correctly predicted [19]. In this 
work, Q3 is used to evaluate the top layer softmax classifier. Every evaluation result is the mean of Q3 value 
over three times practical running under five fold partition, actually 4 in 5 of proteins are randomly picked up 
as training data, and the remaining are all the test samples. 

In general, unsupervised learning favors a large amount of training data, so that the nature of the data can 
be better captured, however, the bigger the dataset is, the longer is the training time. The hidden layer units' 
number is 400 in both hidden layers of the stacked auto encoder, and the other parameters of a sparse auto 
encoder in (4) are set as: 0.035;  3 3;  =5e      . Polypeptides come from CB513, RS126 and 25PDB 
by the slide window method are used for building prediction model. In our proposed SFE method a new 
representation of these polypeptides should be extracted as the output of a stacked two layers auto encoder. 
Compared to the representation of PSSM, the representations of SFE features take into account both local 
variants and global variation in the balance. It not only reflects the evolutionary information, but also the 
sequence interaction of residues. Hence SFE is a powerful feature extraction method for secondary structure 
prediction.    

SVM is thought as the best shallow network for classification problem, however, the time consumption 
will increase very much when the dataset is becoming more and more big. In our experiments, the softmax 
classifier with fine-tuning as the shallow network achieves the comparable accuracy and with a relatively 
short production period. 

 
Table1: Experimental results of prediction accuracy Q3 by SFE method on different datasets. 
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Train  

Data 

Window size Prediction of 

H;       E;       C 

(%) 

Accuracy (Q3) 

 (%) 

After   /  before 

(Fine tuning) 

RS126 

 

13 76.92; 64.88; 70.06 71.16 / 62.03 

23 76.79;63.23;74.14 72.87 / 66.88 

CB513 

 

13 78.29;69.29;76.33 75.69 / 66.76 

23 79.22;67.51;76.85 75.86 / 64.25 

25PDB 

 

13 81.11;74.82;76.43 77.57 / 66.41 

23 81.51; 74.45; 77.39 78.11 / 65.48 

27 82.59;74.41;76.19 77.79 / 64.23 

35 81.5 ; 74.9 ; 76.6 77.83 / 63.92 

 
Table 1 shows the performance based on SFE features. Variable H, E, C and Q3 represent the accuracy of 

Helix, Sheet, Coil, and overall three classes. Accuracy (Q3) is calculated under 5 fold cross-validation. 
When the sliding window of 23 is used for PSSM profile, the best prediction accuracy Q3 for each 

dataset from our comparative experiments are: around 72% for RS126, around 75% for CB513 and around 
78% for 25pdb. To notice, on 25PDB the prediction accuracy of the Helix H structure is close to 81% and of 
Sheet E structure is passing 74% by using SFE features. It shows that SFE is powerful on recognizing these 
two main structures in longer polypeptides. Model trains and testing is relatively fast. The more important 
thing is that SFE is more suitable for a big protein dataset, that is proved by these experiments. Table 1 also 
recover that the fine-tuning is a very important part of the training of this deep learning network. 

Our proposed SFE close to the method proposed in [20]. They both learn features in the input data and 
initializes weights for the next network layers. However, [20] uses RBMs (restricted Boltzmann Machines) 
for initializing the weights in a DN (Deep learning (belief) networks) via training approach, while SFE uses 
stacked sparse auto encoders for initializing the weights in a deeper learning network. In paper [22], an 
integration of Conditional Random Fields (CRF) and shallow neural networks achieves 84% Q3 on the 
CASP and CAMEO test proteins. The most obvious improvement of SFE is that the window size used in 
SEF is 23, while 11 in [22] and 17 in [20]. In paper [20], three kinds of features: the amino acid residues  
(RES), the PSSM information (PSSM), and the Atchley factors (FAC) are selected as the input profiles. In 
paper [22], there are 42 input features for each residue, 21 from PSSM and the other 21 from the primary 
sequence. The model [21] based on a deep supervised generative stochastic network (GSN), using PSSM, 
protein sequence of amino-acid residues, and start and end positions of the protein sequence. In our research, 
we only use PSSM profile for SFE. In the future work, more information will be added to improve the 
performance of SFE.   

The contributions of SFE method are as follows: 
1. A new feature extraction method by a stacked auto encoder is proposed to discover an improved 

second order presentation for protein secondary structure prediction.  
2. The longer distance interactions up to 23 are encoded into the description of protein polypeptides 

based on PSSM. This representation is with the potential power for learning more complex model in the field 
of protein secondary structure prediction. 

3. The proposed method achieves comparable prediction accuracy (Q3) than art-of-the-state 
PSSM+SVM method. 

Thus, it is a valuable method to predict protein structure, particularly for low-homology amino acid 
sequences and may at least play an important complementary role to existing methods. We highlight that the 
deep learning is an emerging technique in this area, and study of deep learning network for protein secondary 
structure prediction is our main direction in the near future.  
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