
 Detection of Stored Procedure Bad Smells 

Sutthikan Naowarat 1  and Pornsiri Muenchaisri 1 
1 Department of Computer Engineering, Chulalongkorn University, Bangkok Thailand,  

Abstract. Stored procedures are commonly used in accessing and manipulating data in large-scale system 
development to optimize the query database, reduce the application workloads and reduce the traffic 
problems between the database and the application. If source code of stored procedures have bad smells, it 
will have impact in modification, and eventually have a negative impact on their quality and maintainability. 
This research proposes Tree Diagram and Context Analysis approach in detecting six different bad smells of 
stored procedures. The tree diagram approach is the comparison tree diagram of bad smells and source code 
which is written in PL/SQL. The context analysis approach is the creation of rules and qualifications of bad 
smells for increasing the accuracy in detection. In addition, this research explains the overview process, the 
algorithm process, and has uses example source code. The evaluation uses MI (Maintainability Index) to 
present the approach which are practical and effective. 

Keywords: stored procedures, detection bad smells, tree diagram, context analysis, maintainability index 

1. Introduction 

Stored procedures are commonly used in accessing and manipulating data in large-scale system 
development to optimize the query database, reduce the application workloads and reduce the traffic 
problems between the database and the application. The inefficient source code developed by programmers 
for stored procedures creates bad smells. The stored procedures bad smells have serious problems on the 
overall system, have impact on modification, and eventually have a negative impact on their quality and 
maintainability[1][2]. 

Most of the previous researches about stored procedures aimed to explain the meaning and discover 
techniques[3][4] to improve or to identify flaws according to custom conditions[5]. Also, the bad smells 
researches mostly about object oriented language. However, stored procedures in this research is developed 
with PL/SQL which is a structured language and designed as block, declaration section block, execution 
section block, and exception section block[6]. 

This research proposes an approach to detect bad smells of stored procedures using Tree Diagram and 
Context Analysis. The tree diagram is a process of analyzing bad smells to find the attributes and generate 
bad smells tree diagram, and then generate source code tree diagram to compare tree diagram structure or 
members of the child node set using propose algorithm and BFS (Breadth First Search). The context analysis 
is extracted using textual analysis techniques to create conditions or rules for bad smells which can be used 
to identify bad smells in the source code. The evaluation of the research uses the results of maintainability 
index which collects pre-experiment and post-experiment values as a performance benchmark. 

The remainder of the paper is organized as follows: Section 2 states the related work. Section 3 presents 
the process and illustrates the structure and algorithm of the approach for detecting bad smells. Section 4 
mentions case study and Section 5 presents the conclusion. 

2. Related Work 

                                                           
  Corresponding author. Tel.: + 66816947784; fax: +6622867021. 
   E-mail address: Sutthikan.N@Student.chula.ac.th. 

 

    

 

    

1224

ISBN 978-981-11-3671-9
Proceedings of 2017 the 7th International Workshop on Computer Science and Engineering 

(WCSE 2017)
Beijing, 25-27 June, 2017, pp. 1224 -1229

admin
打字机文本
doi: 10.18178/wcse.2017.06.213



Dimas C. Nascimento et al. [5] presented PL/SQL Advisor tool to improve the efficiency and code 
quality of stored procedures by using control dependence tree (CDT) and control flow graph. Tan Baohua 
and Zeng Ling [3] analyzed the meaning and technique of using the stored procedures and presented other 
approaches to improve the performance of RDBS, such as the using stored procedures to improve the 
running performance of an application.  

Nattha Y. [7] proposed an approach and tool to detect flaws in software design model by using graph 
diagram and tree diagram. That tool generated both graph diagram and tree diagram of bad smells and 
software design model and compared the two diagrams to detect bad smells. Thisana P. [8] proposed a 
method for detecting bad smells by using object-oriented software metrics to measure the values of bad 
smells to identify their types. Gregory T. et al. [9] presented a new technique to eliminate SQL injection by 
capturing the parse tree structure at runtime and parse tree structure after inserting user-supplied input. The 
SQL injection validation is compared to both parse trees. Yuki Ito et al. [10] proposed a method for detecting 
the factors behind bad smells by using declarative meta programming (DMP). The detection is performed by 
comparing bad smells with the abstract syntax tree (AST) of the target source code and then representing the 
comparison using Prolog. 

Palomba F. [11] used TACO (Textual Analysis for Code smell detectiOn) to detect Long Method smell, 
which is able to detect between 50% and 77% of the smell instances with a precision ranging between 63% 
and 67%. Walter B. and Martenka P. [12] investigated two Large Class to find related patterns by using data 
mining. The patterns can be applied to identify bad smells.  

Bad smells in this research are from Knowledge Xpert for PL/SQL which is a comprehensive Windows-
based technical resource that covers the entire lifecycle of PL/SQL programming. The program provide 
thousands of topics, background information, best practices, and examples. In addition, the selected six 
PL/SQL bad smells used in this research are as follows: 1. Business Logic in Exception Sections (important 
parts of business logic source code should not be in exception sections), 2. Converting Cursor Loops with 
DML (using cursor loops with DML effect to query speed), 3. Move Initialize and Clean Up Logic (initialize 
and clean up should be separated and executed through the modules), 4. Replace Literals (using characters 
directly in commands should be invoked via a constant variable or function), 5. Range Values in Numeric 
FOR Loop (null numeric value of loop operation causes error), 6. Using SUBTYPES and Anchored Types 
(when the variable length is changed in data table, it does not affect the code). 

3. The Approach for Detecting Bad Smells of Stored Procedures 

 The overview of bad smells detection process is depicted in Fig. 1. The three major phases consists of 
Creation Bad Smells Tree Diagram, Bad Smells Detection, and Refactoring and Measurement. 

 

Fig. 1: Overview of the approach for detecting bad smells of stored procedures 

3.1. Creation of Bad Smells Tree Diagram 

1225



The first phase analyzes six stored procedure bad smells for generating bad smells tree diagram, 
employing two processes: Analyzing Bad Smells and Creating Bad Smells Tree Diagram. 
3.1.1.Analyzing Bad Smells is a process of analyzing six stored procedures bad smells written in PL/SQL 
language structure designed as block, declaration section block, execution section block, and exception 
section block. The results of this process are the characteristics of six bad smells, such as the sequence 
structure of the statement in section block, and the node in bad smells tree structure.  
3.1.2.Creating Bad Smells Tree Diagram is a process of generating bad smells tree diagram from the 
mentioned characteristics. Fig. 2 and Fig. 3 are examples of bad smells tree diagram. 

 
    Fig. 2: Business Logic in Exception Sections                      Fig. 3: Converting Cursor Loops with DML 

3.2. Bad Smells Detection 

This phase measures maintainability index before refactoring and detects bad smells of source code 
which consists of Measuring Maintainability Index and An Approach to Detect Bad Smells. In addition, it 
explains the bad smells detection algorithm and calculation of maintainability index............................. 
3.2.1.Measuring Maintainability Index is a process of measuring MI (maintainability index) of source 
code using program ClearSQL to obtain MI values before refactoring. MI calculations are as follows:  
   
                   MI (Maintainability Index)    =    171 - 5.2 * ln(V) - 0.23 * (G) - 16.2 * ln(LOC) 

     V          =   Halstead Volume 
       G          =   Cyclomatic Complexity 
       LOC     =   count of Source Lines Of Code (SLOC) 
       CM        =   Percent of lines of Comment (optional) 
 

  
Fig. 4: Example Tree Diagram 

 

3.2.2.The Approach to Detect Bad Smells is a proposed algorithm to identify bad smells type of source 
code which consists of two processes: Creating Source Code Tree Diagram and Context Analyzing. 
 Creating Source Code Tree Diagram is a process of generating tree diagram of source code (Fig. 4) to 
better understand the algorithm. The brief algorithm is all nodes, except leaf node required the same structure 
(the same members of set) as the bad smells tree diagram. The leaf node is a set or a subset of bad smells tree 
diagram. The BFS theory is used in searching tree diagram for this research............................................. 
Definition 1 (Level 1 to Level N-1) 

The algorithm for detecting  bad smells uses  the child node set and the tree level as shown in Fig. 5  
and Fig. 6. The algorithm is divided into two steps as follows:  

S and S' are all nodes from Level 1 to Level N-1 
(1). ∀ S' ∈ T' = ∀ S ∈ T ← Level 1, 2, ... , N-1 
Example. {A, C, G} ∈ S' = {A, C, G} ∈ S ← Level 1 and 2 
Therefore S' is equal to S 
Definition 2 (Level N) 
Z and Z' are all nodes from Level N 
(2). Z' ∈ T'; Z ∈ T | {Z' ∈ T' } ⊂ {Z ∈ T} ← Level N 
Example. {E, M} ∈ Z' ; {E, M, N} ∈ Z | {E, M} ⊂ {E, M, N} 
← Level 3 
Therefore Z' is a subset of Z 
 

1226



First, verification of the node level in T', if “Level < N and Level ≠ N-1” find the child node set and 
compare it to the child node set of T. The comparing condition is “All Child of T'i ≠ All Child of Ti”, if it is 
true then the T' structure is not the same as T, then this algorithm RETURN False, illustrate that the source 
code tree diagram does not have bad smells, but if it is not true then the T' structure is the same as T then use 
the loop to the next level. The example from Fig 4 shown the values of N is 3, N-1 is 2 and Level 1 of T' is 
node A, where A = {C, G} and Level 1 of T is A, where A = {C, G}. If the compared child node {C, G} to 
{C, G} is equal then used loop to the next level. 

Second, verification of the node level in T', if “Level < N and Level = N-1”

 

find the child node set and 
compare it to the child node set of T. The comparing condition is “All Child of T'i

 

⊂ All Child of Ti”,

 

if it is 
true then the T' structure is the subset of T,

 

then this algorithm RETURN True, illustrate that the source code 
tree diagram has bad smells, but if it is not true then the T' structure is not the subset of T,

 

then this algorithm 
RETURN False, illustrate that the source code tree diagram does not have bad smells. The example from  
Fig 4, the Level 2 of T' is C and G, where C = {E}, G = {M} and Level 2 of T is C and G, where C = {E},  
G = {M, N} The compared child node {E} is a subset of {E} and {M} is a subset of {M, N}, therefore 
RETURN True, it identify the source code having bad smells.  

This algorithm does not require the level n or leaf node of T' to have the same structure with T, which is 
just a subset, however it can identify bad smells, but the levels of 1 to n-1 require the same structure. 

  

  

               Fig. 5: The Algorithm of Bad Smells Detection 

                                   

Fig. 6: Workflow of Algorithm 

 Context Analyzing is extraction using textual analysis techniques to create the condition in increasing 
the accuracy to detect bad smells. The example of the context analysis for “Business Logic in Exception 
Sections” are the verification in the exception section and LOC <= 20. 

3.3.

 

Refactoring and Measurement

 

This final phase describes refactoring and measurements consisting of three processes: Refactoring, 
Measuring Maintainability Index, and Comparison Analysis Maintainability Index.

 

3.3.1.Refactoring is to refactor the bad smells source manually following the suggestions and the refactoring 
steps from PL/SQL Knowledge Xpert.……………..………………………………………………………

 

3.3.2.Measuring Maintainability Index

 

is measuring source code after refactoring. The calculation of 
measurements in 3.2.1. uses ClearSQL program to obtain MI values. ………………………………….. 
3.3.3.Comparison Analysis

 

Maintainability Index is comparing the MI values before and after refactoring 
to evaluate the efficiency of the proposed approach, where MI(1) is the measurement MI of source code 
before refactoring, and MI(2) is the measurement MI of source code after refactoring. The higher values of 
MI(1) than MI(2) revealed a positive performance due to the reduction of MI in the source code. The values 
of MI(1) equal MI(2) showed  unaltered  performance due to  constant MI in the source code. The less  
values of MI(1) than MI(2) indicated a negative performance due to increased MI in the source code. 
                       MI(1) > MI(2) is positive, MI(1) = MI(2) is unaltered, MI(1) < MI(2) is negative 

1227



4. Case Study 

This section presents an example for detecting CCL(Converting Cursor Loops with DML) which 
affected execution speed of repetitive PL/SQL statements as illustrated in Fig. 7. 

 
Fig. 7: PL/SQL Source Code 

The first phase is the Creation Bad Smells Tree Diagram. After this, CCL tree diagram is generated as 
shown in Fig. 8. ID represent node ID and PID represent Parent ID. The second phase is Bad Smells 
Detection which measures the source code before refactoring to obtain the MI(1) and create tree diagram of 
source code (Fig. 9). Context analysis condition of CCL bad smell to limit in searching source code in 
generating tree diagram was verified in declaration and exception section.  

        Fig. 8: Tree Diagram of CCL                                             Fig. 9: Tree Diagram from source code 

Then compare the structure using the proposed algorithm to identify the bad smells using members of 
child node set as show below is from tree diagrams (Fig.8 & 9). 
n0 = {n1, n4} = {declaration section, execution section}   and   n'0 = {n'1, n'4} = {declaration section, execution section} 
n1 = {n2}      = {cursor stmt}           and   n'1 = {n'2}      = {cursor stmt} 
n2 = {n3}      = {select stmt}            and   n'2 = {n'3}      = {select stmt} 
n4 = {n5}      = {for stmt}               and   n'4 = {n'5}      = {for stmt} 
n5 = {n6, n7, n8, n9} = {insert stmt, delete stmt, update stmt, select stmt} and n'5 = {n'6, n'7} = {insert stmt, update stmt}

 

The results are n'0 = n0, n'1 = n1, n'4 = n4 and n'2 ⊂ n2, n'5 ⊂ n5 which is according to bad smells detection 
algorithm. Therefore, the detecting process identified CCL bad smell in the source code. The final phase is 
Refactoring and Measurement of source code according to steps of PL/SQL Knowledge Xpert to obtain the 
MI(2). The values in this case study of MI(1) is 102 and MI(2) is 93. The reduced numbers showed increased 
efficiency of source code. This research experimented the source code from PL/SQL Knowledge Xpert and 
the results are shown in Table I. 

Table I: Maintainability Index Results 

Bad Smells

 

MI(1)

 

MI(2)

 

MI(1)>MI(2)

 

MI(1)=MI(2)

 

% of Change

 

Business Logic in Exception Sections 58 54 ●  6.90 
Converting Cursor Loops with DML 102 93 ●  8.82 
Move Initialize and Clean Up Logic 88 84 ●  4.55 
Replace Literals 121 121  ● 0.00 
Range Values in Numeric FOR Loop 125 114 ●  8.80 
Using SUBTYPES and Anchored Types 137 137  ● 0.00 

1228



5. Conclusions 

This research proposes Tree Diagram and Context Analysis approach to detect bad smells of stored 
procedures focusing on six bad smells: Business Logic in Exception Sections, Converting Cursor Loops with 
DML, Move Initialize and Clean Up Logic, Replace Literals, Range Values in Numeric FOR Loop, and 
Using SUBTYPES and Anchored Types. The experiment was according to the algorithm of the approach to 
detect bad smells. A case study using CCL bad smell code of PL/SQL Knowledge Xpert was performed 
through the process of detection in order to obtain the measurement maintainability index to compare and 
evaluate the proposed approach. The results of the experiment are presented in Table I which show mainly 
positive measures of performance. The main contribution of this research is the improvement of source code 
maintainability, increase in speed execution, and reduction of time for comprehension and modification or 
extensibility.  

The emphasis of this research is to increase the performance of stored procedures using the algorithm 
and the tree diagram and context analysis approach which could be applied to other various language 
programs for quality improvement. 

6. References 

[1] H.-S. Lee and K.-G. Doh, "Tree-pattern-based duplicate code detection," presented at the Proceedings of the ACM 
first international workshop on Data-intensive software management and mining, Hong Kong, China, 2009. 

[2] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, "A quantitative evaluation of maintainability enhancement by 
refactoring," in International Conference on Software Maintenance, 2002. Proceedings., 2002, pp. 576-585. 

[3] B. Tan and L. Zeng, "A performance optimization based on stored procedure in RDBS project," in 2010 
International Conference on Computer and Communication Technologies in Agriculture Engineering, 2010, pp. 
594-597. 

[4] M. Habringer, M. Moser, and J. Pichler, "Reverse Engineering PL/SQL Legacy Code: An Experience Report," in 
2014 IEEE International Conference on Software Maintenance and Evolution, 2014, pp. 553-556. 

[5] Dimas C. Nascimento, Carlos Eduardo Pires, and T. Massoni, "PL/SQL Advisor: a Static Analysis-based Tool to 
Suggest Improvements for Stored Procedures," in 9th Brazilian, Symposium on Information Systems (SBSI'13), 
João Pessoa, Brazil, pp. 343-355, 2013. 

[6] M. Alt, iota, iota, #351, iota, H. S, et al., "Automated procedure clustering for reverse engineering PL/SQL 
programs," presented at the Proceedings of the 31st Annual ACM Symposium on Applied Computing, Pisa, Italy, 
2016. 

[7] N. Yaowarattanaprasert, "Design and Development of an Approach for detecting Flaws in Software Design Model 
Using Graph Diagram and Tree Diagram," Master of Science Program in Software Engineer, Computer Engineer, 
Chulalongkorn University, 2013. 

[8] T. Pienlert and P. Muenchaisri, "Bad-Smell Detection For Refactoring Using Object-Oriented SoftwareMetrics," 
International Conference on Computer Science, Software Engineering, InformationTechnology, e-Business, and 
Applications ,CSITeA,Cairo, Eypt, pp. 15-47, December 2004. 

[9] G. Buehrer, B. W. Weide, and P. A. G. Sivilotti, "Using parse tree validation to prevent SQL injection 
 attacks," presented at the Proceedings of the 5th international workshop on Software engineering and  middleware, 
Lisbon, Portugal, 2005. 

[10] Y. Ito, A. Hazeyama, Y. Morimoto, H. Kaminaga, S. Nakamura, and Y. Miyadera, "A Method for Detecting Bad 
Smells and ITS Application to Software Engineering Education," in 2014 IIAI 3rd International Conference on 
Advanced Applied Informatics, 2014, pp. 670-675. 

[11] F. Palomba, "Textual analysis for code smell detection," presented at the Proceedings of the 37th International 
Conference on Software Engineering - Volume 2, Florence, Italy, 2015. 

[12] B. Walter and P. Martenka, "Looking for Patterns in Code Bad Smells Relations," in 2011 IEEE Fourth 
International Conference on Software Testing, Verification and Validation Workshops, 2011, pp. 465-466. 

1229




