
 Modeling Control Flow of Event-B Using State Transition System

Han Peng 1, Chenglie Du 1 and Haobin Wang 2
1 College of Computer Science, Northwestern Polytechnical University, Xi’an, China

2 College of Computer Science, Xi'an Aeronautical University, Xi’an China

Abstract. There are some limitations of Event-B method in expressing the event order of system. In order
to solve this problem, event refinement structure method was proposed to model the system refinement
structure and control flow. However, the event refinement structure diagram cannot directly map to a
behavioral semantic model such as communication sequence process or labeled transition system, and is
inconvenient to verify the behavior properties of system. In this paper, we propose a general method to model
the control flow of the Event-B model with the iUML-B state machine; so that it has the same event traces as
the event refinement structure method. Then, we use a simple case to prove the practicality of this method.
Finally, we map the iUML-B state machine to a labeled transition system and verify the behavior properties
of the system.

Keywords: Event-B, control flow modeling, labeled transition system, iUML-B state machine

1. Introduction

Event-B[1] is a formal method evolved from B method[2] and action system[3]. It uses simple symbols
and structures to model the system, and is well suited for different fields including distributed systems. In
order to solve the limitation of event B in control flow modelling, event refinement structure (ERS) method
[4-8] is proposed. The ERS method uses a tree structure similar to the Jackson Structure Diagram (JSD) style
to represent the association between the abstract event and the refinement event and the order in which the
event occurred. Then, with the support of the Rodin platform, one can generate Event-B code from the ERS
model.

However, there are some limitations of ERS method. For example, for those engineers who are
accustomed to using the state transition system modeling, there is a gap between ERS’s JSD diagram style
and state transition diagrams. In addition, we cannot get the events order of the system directly from the ERS
event refinement structure diagram. Compared with the JSD graph, the state diagram is not prone to
ambiguity and is easier to map to the behavior semantic model such as the labeled transition system (LTS).

In this paper, we propose a method to model Event-B control flow with the iUML-B state machine[9].
First, we use the iUML-B state machine to express the event order of the ERS decomposition pattern and get
the event decomposition pattern represented by the iUML-B state machine. Secondly, we use an example of
an elevator control system to demonstrate the practicality of our method. Finally, we map the iUML-B state
machine model to the LTS model, and use the LTS analysis tool to verify the behavior properties of the
elevator control system. Compared with the ERS method, our modeling method visualizes the behavior
model of the system and uses LTS as the behavior semantic model. Therefore, we can use LTS analysis tool
(LTSA)[10] to verify the behavior properties of the system.

2. Event refinement using iUML-B state machine

 Corresponding author. Tel.: + 8613474113698; fax: +86(029)84252366.
 E-mail address: hansbeng2016@gmail.com.

1179

ISBN 978-981-11-3671-9
Proceedings of 2017 the 7th International Workshop on Computer Science and Engineering

(WCSE 2017)
Beijing, 25-27 June, 2017, pp. 1179 -118 6

admin
打字机文本
doi: 10.18178/wcse.2017.06.206

2.1. Event refinement structure

The atomic decomposition pattern of the ERS method consists of four control flow patterns and four
replicator patterns. Our main concern is the four control flow patterns, including Sequence pattern, Loop
pattern, And pattern and Xor pattern. The idea of the ERS method is shown in Figure 1.

AbstractEvent

Event1 Event2 Event3

AbstractEvent

Event1 LoopEvent Event3

*

 (a)Sequence pattern, (b) Loop pattern

AbstractEvent

Event1 AndEvent1 Event3AndEvent2

and

AbstractEvent

Event1 XorEvent1 Event3XorEvent2

xor

(c)And pattern (d) Xor pattern

Fig. 1: The idea of the ERS method

 Sequence pattern
The Sequence pattern is shown in Figure 1 (a), which is intended to break down an abstract events into

several refinement events that occur in orders, where there must be a refinement event to refine the abstract
event. The event trace of Sequence pattern is:

<Event1, Event2, Event3>.

 Loop pattern
The loop pattern is shown in Figure 1 (b), which is intended to break down an abstract event into an

event which can occur repeatedly (loop event) as well as two ancillary events. The event trace of Loop
pattern is (We use ‘*’ to indicate that events can be repeated):

<Event1,(LoopEvent)
*
,Event3>.

 And pattern
The And pattern is shown in Figure 1 (c), with the intention of breaking down an abstract event into two

or more refinement events that can be executed in any order. Moreover, Event3 can be enabled only after
both of two "And" events have been completed. The event traces of And pattern is:

<Event1，AndEvent1，AndEvent2，Event3>

or
<Event1,AndEvent2,AndEvent1，Event3>.

 Xor pattern
The Xor pattern is shown in Figure 1 (d), with the intention of decomposing an abstract event into two or

more refinement events, with only one of them being executed .The event traces of Xor pattern is:
<Event1,XorEvent1,Event3>

or
<Event1,XorEvent2，Event3>

2.2. Using iUML-B state machine to express event refinement structure

 General method
Our method is inspired by Stefan Hallerstede's paper[11]and[12]. Hallerstede proposed an idea of the

control flow modelling of the Event-B model, and pointed out that during the refinement of the Event-B
model, edge refinement (or event refinement) and node refinement (or state refinement) are similar.
Hallerstede gives the equivalence between edge refinement diagram and node refinement diagram. Based on
Hallerstede’s works, we derived a general approach to express ERS using the iUML-B state machine, which
is described as follows:

1180

1) An abstract state machine is used to describe the trace of execution of the abstract model.
2) In the refinement model, we change a node in the abstract state machine into a super node in the

concrete state machine.
3) We add new states and events in the super node, as refinement events in the next level.
4) The refinement event is assigned to the edge of the state machine, and ensures that its execution trace

meets the requirements for decomposition / refinement.
According to the above general method, we first give the initial abstract state machine model. Then we

give the iUML-B state machine representation of the four decomposition patterns described above.
The initial abstract state machine model is shown in the Figure 2.

Fig. 2: The initial abstract state machine

 Event refinement using iUML-B state machine
1) Sequence pattern
In order to get the correct trace of events, in the Sequence decomposition pattern, we change the S0 state

of the abstract state machine to super node and add three sub-states S0_1, S0_2, S0_3 and two events Event1,
Event2 in its nested state machine, then let Event3 refine the AbstractEvent, as the Figure 3 shows.

Fig. 3: Sequence decomposition pattern

2) Loop pattern
In the Loop decomposition pattern, we change the S0 state of the abstract state machine to the super node,

and add two sub-states of S0_1, S0_2 ,Event1 and LoopEvent in its sub state machine, where LoopEvent is
the reflex edge of state S0_2, and then let Event3 refine the AbstractEvent, as the Figure 4 (a)shows. We can
also model Loop pattern using the pseudo-state node, as shown in the Figure 4(b).

(a) (b)

Fig. 4: Loop decomposition pattern

3) And pattern
In order to get the parallel event, in the And decomposition pattern, we first change the S0 state of the

abstract state machine to super node and add two sub-states of S01, S02 and Event1 event to its sub state
machine. Then states S02 is spitted into two orthogonal state machines and add the corresponding sub-states
and events, AndEvent1 and AndEvent2, and finally let Event3 refine the abstract event AbstractEvent, as the
Figure 5 shows.

1181

Fig.5: And decomposition pattern

4) Xor pattern
In the Xor decomposition pattern, we change the S0 state of the abstract state machine to super node and

add three sub states S0_1, S0_2, and S0_3 as well as Event1, XorEvent1 and XorEvent2 events to the sub
state machine. Let XorEvent1 event and XorEvent2 event have the same source state and the distinct target
state, and finally let Event3 refine the abstract event AbstractEvent, as Figure 6 shows.

Fig. 6: Xor decomposition pattern

We use the iUML-B state machine to implement the ERS method and the atomicity decomposition
method of the four control class event decomposition patterns. The event traces of the model are same as the
corresponding patterns in the ERS method.

3. Case study

3.1. Modeling the elevator system using iUML-B State Machine

We use a simple example of an elevator system to demonstrate the practicality of an event
decomposition model based on the iUML-B state machine. In order to make our work clearer, we briefly
describe the requirements of the elevator control system as follows:

The elevator control system consists of three key objects: elevator, door and button. The elevator can be
moving or stopped. The door can be closed or opened. After the passenger enters the elevator and presses the
button, the elevator will stop at the requested floor.

The complete requirements for the elevator system can be found in the literature[7].In this paper, we
only care the events added during the system refinement and the constraints imposed by the atomicity
decomposition on the order between events.

 Control flow requirements of elevator system
The control flow requirements for the elevator system are shown in Table 1, which is come from the[7].

Table 1: Description of flow requirements

Flow

requirements

Example Description

Sequencing
requirements

LIFT7-The floor door closes before the
lift is allowed to move

Selection
requirements

LIFT8-If a lift is stopped then the floor
door for that lift may be open. In this
requirement the lift door can be either
opened or left closed when the lift is
stopped.

Repetition
requirements

LIFT9-There might be more than one
external floor request in a particular
floor, the lift will respond to them (stop)
only once

1182

 Control flow refinement process based on iUML-B state machine
We used the iUML-B state machine to refine the control flow. The original model of the system is shown

in the Figure 7.
1) Top-level abstraction model
Since the top-level abstraction model does not involve the interaction between the elevator and the door,

there is no need to describe the relations between LiftMove event and LiftStopevent, because this requirement
has been modelled in the liftStatemachine0, as shown in Figure 7.

2) First refinement
As with the [7], we introduced three events, namely OpenLiftDoor, CloseLiftDoor and NotOpenLiftDoor

in the first refinement to express the behaviours of door, as shown in Figure 8.
The difference is that we use another state machine, FlowStateMachine1, to constrain the event traces of

system, as shown in Figure 9. We use the pseudo-state to express the Xor relationship between the
OpenLiftDoor event and NotOpenLiftDoor , and put them in a nested super state. Then we make the LiftStop

event to be a super-state’s ingoing event, which limits the LiftStop event must occurs before OpenLiftDoor
event or NotOpenLiftDoor. Similarly, we let the LiftMove event to be the outgoing edge of the super-state,
which specifies that the LiftMove event must be executed after these two events.

Fig. 7: LiftStateMachine

Fig.8: DoorStateMachine

Fig. 9: FlowStateMachine1

3) Second refinement
This refinement introduces the RequestFloor event, which indicates that the passenger pressed the button

and chose a floor. As suggested in the [7], passengers should at least choose one floor and the elevator will
stop at the corresponding floor. So the RequestFloor event should occur at least once before the LiftStop
event occurs. The inventors of the ERS method also admitted that they could not express such "at least once"
requirement. But the iUML-B state machine can express it, as shown in the Figure 10.

Fig. 10: FlowStateMachine2

1183

We use the iUML-B state machine to construct a simple elevator control system for the control flow
refinement process. At each refinement level, we distinguish between object state machines and control flow
state machines. The object state machine describes the action of an object (elevator, door) itself, while the
control flow state machine constraint the overall event order of the elevator control system. By combining
these two types of state machines, we get a framework of correct event traces of elevator control system. The
event order of this framework is consistent with the order in which the ERS method generated.

3.2. Formalization of system behavior

In order to facilitate the observation of the event order of the system and verify its behaviour properties,
we convert the iUML-B state machine to LTS and verify its behaviour using the LTSA analysis tool.

 Convert iUML-B state machine to LTS
We use the finite state process (FSP)[10] to express LTS and visualize it with LTSA.
1) Top-level abstract LTS model
The top-level abstraction model of the elevator control system described by LTS is:

Lift = (liftstop-> liftmove-> Lift).

The graphical representation of the above LTS model is shown in Figure 11.

Fig. 11: Abstract LTS model of elevator system

2) First refinement LTS model
To express the state transition of the door, we write LTS as follows:

Door = (openliftdoor-> closeliftdoor-> Door | notopendoor-> Door).

The graphical representation of the above LTS model is shown in Figure 12.

Fig. 12: Abstract LTS model of door system

The LTS control flow model corresponding to the first refinement is:
Flow1 = (liftmove-> liftstop-> Flow2),

Flow2 = (openliftdoor-> closeliftdoor-> Flow1 | notopendoor-> Flow1)

The graphical representation of the above LTS model is shown in Figure 13.

Fig. 13: First refinement of entire system

2) Second refinement LTS model

1184

The LTS control flow model corresponding to the second refinement is:
Flow1=(liftmove->Flow2),

Flow2=(requestFloor->Flow2|requestFloor->Flow3),

Flow3=(liftstop->Flow4),

Flow4=(openliftdoor->closeliftdoor->Flow1|notopendoor->Flow1).

The graphical representation of the above LTS model is shown in Figure 14.

Fig. 14: Second refinement of entire system

 Simulation and verification of system behavior
We use the LTSA tool to simulate the final behavioural model of the system. The simulation result is

shown in Figure 15.
It can be seen that after the Liftmove event occurs, the RequestFloor event can occur one or more times

before the Liftstop event can occur. This is in line with the system requirements, because only after the
passengers press the floor button, the elevator will stop in a certain floor. The event traces of model also
show that it satisfies the three control flow requirements described in Table 1.

Fig. 15: Simulation of system behaviour

We used the LTSA tool to verify the safety property of the final elevator control system's behavior
model. The results show that the model is deadlock-free.

3.3. Comparison with atomicity decomposition(AD) method

By comparing we found that the AD method is good at description of the relationship between different
refinement levels, but it cannot express event orders intuitively. iUML-B state machine is more intuitive in
expressing the event order at the same level, but cannot express the refinement relationship between different
levels. Moreover, the AD plug-in has some constraints in the Event-B code generation. Sometime we need
add control variable manually, while iUML-B state machine can generate Event-B control code without
manual operations.

4. Conclusion

In this paper, we have proposed a method to construct an Event-B control flow model using iUML-B
state machine, which explicitly expresses the control flow of the Event-B model by state transitions. The
control flow model constructed with the iUML-B state machine can automatically generate Event-B's state

1185

control variables to control the event traces of the model. Furthermore, we have mapped iUML-B state
machine to a LTS behavioural semantic model, this allows us to verify the behaviour properties of the
system as early as possible.

In the future, we will use a variety of temporal logic properties to constrain the behaviour of the system
model, and get the corresponding Event-B control flow model.

5. Acknowledgements

We would like to express our very great appreciation to Professor Colin Snook for his valuable and
constructive suggestions during this research work.

6. References

[1] J. R. Abrial, Modeling in Event-B: System and Software Engineering: DBLP, 2010.

[2] J. R. Abrial, "The B-book: assigning programs to meanings," 1996.

[3] R. J. R. Back and F. Kurki-Suonio, "Distributed cooperation with action systems," Acm Transactions on

Programming Languages & Systems, vol. 10, pp. 513-554, 1988.

[4] A. S. Fathabadi and M. Butler, Applying Event-B Atomicity Decomposition to a Multi Media Protocol: Springer
Berlin Heidelberg, 2009.

[5] A. S. Fathabadi, A. Rezazadeh, and M. Butler, "Applying Atomicity and Model Decomposition to a Space Craft
System in Event-B," 2011, pp. 328-342.

[6] A. S. Fathabadi, "An approach to atomicity decomposition in the Event-B formal method," University of

Southampton, 2012.

[7] E. Alkhammash, M. Butler, A. S. Fathabadi, and C. Cîrstea, "Building traceable Event-B models from
requirements," Science of Computer Programming, vol. 111, pp. 318-338, 2015.

[8] A. S. Fathabadi, M. Butler, and A. Rezazadeh, "Language and tool support for event refinement structures in
Event-B," Formal Aspects of Computing, vol. 27, pp. 499-523 2015.

[9] C. Snook and M. Butler, "UML-B: Formal modeling and design aided by UML," Acm Transactions on Software

Engineering & Methodology, vol. 15, pp. 92-122, 2006.

[10] J. Magee and J. Kramer, Concurrency: state models & Java programs: John Wiley & Sons, Inc., 2000.

[11] S. Hallerstede, "Structured event-b models and proofs," in International Conference on Abstract State Machines,

Alloy, B and Z, 2010, pp. 273-286.

[12] S. Hallerstede and C. Snook, Refining Nodes and Edges of State Machines: Springer Berlin Heidelberg, 2011.

1186

