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Abstract. There are some limitations of Event-B method in expressing the event order of system. In order 
to solve this problem, event refinement structure method was proposed to model the system refinement 
structure and control flow. However, the event refinement structure diagram cannot directly map to a 
behavioral semantic model such as communication sequence process or labeled transition system, and is 
inconvenient to verify the behavior properties of system. In this paper, we propose a general method to model 
the control flow of the Event-B model with the iUML-B state machine; so that it has the same event traces as 
the event refinement structure method. Then, we use a simple case to prove the practicality of this method. 
Finally, we map the iUML-B state machine to a labeled transition system and verify the behavior properties 
of the system. 
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1. Introduction  

Event-B[1] is a formal method evolved from B method[2] and action system[3]. It uses simple symbols 
and structures to model the system, and is well suited for different fields including distributed systems. In 
order to solve the limitation of event B in control flow modelling, event refinement structure (ERS) method 
[4-8] is proposed. The ERS method uses a tree structure similar to the Jackson Structure Diagram (JSD) style 
to represent the association between the abstract event and the refinement event and the order in which the 
event occurred. Then, with the support of the Rodin platform, one can generate Event-B code from the ERS 
model. 

However, there are some limitations of ERS method. For example, for those engineers who are 
accustomed to using the state transition system modeling, there is a gap between ERS’s JSD diagram style 
and state transition diagrams. In addition, we cannot get the events order of the system directly from the ERS 
event refinement structure diagram. Compared with the JSD graph, the state diagram is not prone to 
ambiguity and is easier to map to the behavior semantic model such as the labeled transition system (LTS). 

In this paper, we propose a method to model Event-B control flow with the iUML-B state machine[9]. 
First, we use the iUML-B state machine to express the event order of the ERS decomposition pattern and get 
the event decomposition pattern represented by the iUML-B state machine. Secondly, we use an example of 
an elevator control system to demonstrate the practicality of our method. Finally, we map the iUML-B state 
machine model to the LTS model, and use the LTS analysis tool to verify the behavior properties of the 
elevator control system. Compared with the ERS method, our modeling method visualizes the behavior 
model of the system and uses LTS as the behavior semantic model. Therefore, we can use LTS analysis tool 
(LTSA)[10] to verify the behavior properties of the system. 

2. Event refinement using iUML-B state machine 
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2.1. Event refinement structure 

The atomic decomposition pattern of the ERS method consists of four control flow patterns and four 
replicator patterns. Our main concern is the four control flow patterns, including Sequence pattern, Loop 
pattern, And pattern and Xor pattern. The idea of the ERS method is shown in Figure 1. 
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Fig. 1: The idea of the ERS method 

 Sequence pattern 
The Sequence pattern is shown in Figure 1 (a), which is intended to break down an abstract events into 

several refinement events that occur in orders, where there must be a refinement event to refine the abstract 
event. The event trace of Sequence pattern is: 

<Event1, Event2, Event3>. 

 Loop pattern 
The loop pattern is shown in Figure 1 (b), which is intended to break down an abstract event into an 

event which can occur repeatedly (loop event) as well as two ancillary events. The event trace of Loop 
pattern is (We use ‘*’ to indicate that events can be repeated):  

<Event1,(LoopEvent)
*
,Event3>. 

 And pattern  
The And pattern is shown in Figure 1 (c), with the intention of breaking down an abstract event into two 

or more refinement events that can be executed in any order. Moreover, Event3 can be enabled only after 
both of two "And" events have been completed. The event traces of And pattern is: 

<Event1，AndEvent1，AndEvent2，Event3> 

or 
<Event1,AndEvent2,AndEvent1，Event3>. 

 Xor pattern  
The Xor pattern is shown in Figure 1 (d), with the intention of decomposing an abstract event into two or 

more refinement events, with only one of them being executed .The event traces of Xor pattern is: 
<Event1,XorEvent1,Event3> 

or 
<Event1,XorEvent2，Event3> 

2.2. Using iUML-B state machine to express event refinement structure 

 General method  
Our method is inspired by Stefan Hallerstede's paper[11]and[12]. Hallerstede proposed an idea of  the 

control flow modelling of the Event-B model, and pointed out that during the refinement of the Event-B 
model, edge refinement (or event refinement) and node refinement (or state refinement) are similar. 
Hallerstede gives the equivalence between edge refinement diagram and node refinement diagram. Based on 
Hallerstede’s works, we derived a general approach to express ERS using the iUML-B state machine, which 
is described as follows: 
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1) An abstract state machine is used to describe the trace of execution of the abstract model. 
2) In the refinement model, we change a node in the abstract state machine into a super node in the 

concrete state machine. 
3) We add new states and events in the super node, as refinement events in the next level. 
4) The refinement event is assigned to the edge of the state machine, and ensures that its execution trace 

meets the requirements for decomposition / refinement. 
According to the above general method, we first give the initial abstract state machine model. Then we 

give the iUML-B state machine representation of the four decomposition patterns described above. 
The initial abstract state machine model is shown in the Figure 2. 

 
Fig. 2: The initial abstract state machine 

 Event refinement using iUML-B state machine  
1) Sequence pattern 
In order to get the correct trace of events, in the Sequence decomposition pattern, we change the S0 state 

of the abstract state machine to super node and add three sub-states S0_1, S0_2, S0_3 and two events Event1, 
Event2 in its nested state machine, then let Event3 refine the AbstractEvent, as the Figure 3 shows. 

 
Fig. 3: Sequence decomposition pattern 

2) Loop pattern 
In the Loop decomposition pattern, we change the S0 state of the abstract state machine to the super node, 

and add two sub-states of S0_1, S0_2 ,Event1 and LoopEvent in its sub state machine, where LoopEvent is 
the reflex edge of state S0_2, and then let Event3 refine the AbstractEvent, as the Figure 4 (a)shows. We can 
also model Loop pattern using the pseudo-state node, as shown in the Figure 4(b). 

 
(a)                                                                     (b) 

Fig. 4:  Loop decomposition pattern  

3) And pattern 
In order to get the parallel event, in the And decomposition pattern, we first change the S0 state of the 

abstract state machine to super node and add two sub-states of S01, S02 and Event1 event to its sub state 
machine. Then states S02 is spitted into two orthogonal state machines and add the corresponding sub-states 
and events, AndEvent1 and AndEvent2, and finally let Event3 refine the abstract event AbstractEvent, as the 
Figure 5 shows. 
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Fig.5:  And decomposition pattern  

4) Xor pattern 
In the Xor decomposition pattern, we change the S0 state of the abstract state machine to super node and 

add three sub states S0_1, S0_2, and S0_3 as well as Event1, XorEvent1 and XorEvent2 events to the sub 
state machine. Let XorEvent1 event and XorEvent2 event have the same source state and the distinct target 
state, and finally let Event3 refine the abstract event AbstractEvent, as Figure 6 shows. 

 
Fig. 6:  Xor decomposition pattern  

We use the iUML-B state machine to implement the ERS method and the atomicity decomposition 
method of the four control class event decomposition patterns. The event traces of the model are same as the 
corresponding patterns in the ERS method. 

3. Case study  

3.1. Modeling the elevator system using iUML-B State Machine 

We use a simple example of an elevator system to demonstrate the practicality of an event 
decomposition model based on the iUML-B state machine. In order to make our work clearer, we briefly 
describe the requirements of the elevator control system as follows: 

The elevator control system consists of three key objects: elevator, door and button. The elevator can be 
moving or stopped. The door can be closed or opened. After the passenger enters the elevator and presses the 
button, the elevator will stop at the requested floor. 

The complete requirements for the elevator system can be found in the literature[7].In this paper, we 
only care the events added during the system refinement and the constraints imposed by the atomicity 
decomposition on the order between events. 

  Control flow requirements of elevator system 
The control flow requirements for the elevator system are shown in Table 1, which is come from the[7].  

Table 1: Description of flow requirements 

Flow 

requirements 

Example Description 

Sequencing 
requirements 

LIFT7-The floor door closes before the 
lift is allowed to move 

Selection 
requirements 

LIFT8-If a lift is stopped then the floor 
door for that lift may be open. In this 
requirement the lift door can be either 
opened or left closed when the lift is 
stopped. 

Repetition 
requirements 

LIFT9-There might be more than one 
external floor request in a particular 
floor, the lift will respond to them (stop) 
only once 
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 Control flow refinement process based on iUML-B state machine 
We used the iUML-B state machine to refine the control flow. The original model of the system is shown 

in the Figure 7. 
1) Top-level abstraction model 
Since the top-level abstraction model does not involve the interaction between the elevator and the door, 

there is no need to describe the relations between LiftMove event and LiftStopevent, because this requirement 
has been modelled in the liftStatemachine0, as shown in Figure 7. 

2) First refinement 
As with the [7], we introduced three events, namely OpenLiftDoor, CloseLiftDoor and NotOpenLiftDoor 

in the first refinement to express the behaviours of door, as shown in Figure 8. 
The difference is that we use another state machine, FlowStateMachine1, to constrain the event traces of 

system, as shown in Figure 9. We use the pseudo-state to express the Xor relationship between the 
OpenLiftDoor event and NotOpenLiftDoor  , and put them in a nested super state. Then we make the LiftStop 

event to be a super-state’s ingoing event, which limits the LiftStop event must occurs before OpenLiftDoor 
event or NotOpenLiftDoor. Similarly, we let the LiftMove event to be the outgoing edge of the super-state, 
which specifies that the LiftMove event must be executed after these two events. 

 
Fig. 7:  LiftStateMachine 

 
Fig.8:  DoorStateMachine 

 
Fig. 9:  FlowStateMachine1 

3) Second refinement 
This refinement introduces the RequestFloor event, which indicates that the passenger pressed the button 

and chose a floor. As suggested in the [7], passengers should at least choose one floor and the elevator will 
stop at the corresponding floor. So the RequestFloor event should occur at least once before the LiftStop 
event occurs. The inventors of the ERS method also admitted that they could not express such "at least once" 
requirement. But the iUML-B state machine can express it, as shown in the Figure 10. 

 
Fig. 10: FlowStateMachine2 
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We use the iUML-B state machine to construct a simple elevator control system for the control flow 
refinement process. At each refinement level, we distinguish between object state machines and control flow 
state machines. The object state machine describes the action of an object (elevator, door) itself, while the 
control flow state machine constraint the overall event order of the elevator control system. By combining 
these two types of state machines, we get a framework of correct event traces of elevator control system. The 
event order of this framework is consistent with the order in which the ERS method generated. 

3.2. Formalization of system behavior 

In order to facilitate the observation of the event order of the system and verify its behaviour properties, 
we convert the iUML-B state machine to LTS and verify its behaviour using the LTSA analysis tool. 

 Convert iUML-B state machine to LTS  
We use the finite state process (FSP)[10] to express LTS and visualize it with LTSA. 
1) Top-level abstract LTS model 
The top-level abstraction model of the elevator control system described by LTS is: 

Lift = (liftstop-> liftmove-> Lift). 

The graphical representation of the above LTS model is shown in Figure 11. 

 
Fig. 11: Abstract LTS model of elevator system 

2) First refinement LTS model 
To express the state transition of the door, we write LTS as follows: 

Door = (openliftdoor-> closeliftdoor-> Door | notopendoor-> Door). 

The graphical representation of the above LTS model is shown in Figure 12. 

 
Fig. 12: Abstract LTS model of door system 

The LTS control flow model corresponding to the first refinement is: 
Flow1 = (liftmove-> liftstop-> Flow2), 

Flow2 = (openliftdoor-> closeliftdoor-> Flow1 | notopendoor-> Flow1) 

The graphical representation of the above LTS model is shown in Figure 13. 

 
Fig. 13: First refinement of entire system 

2) Second refinement LTS model 
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The LTS control flow model corresponding to the second refinement is: 
Flow1=(liftmove->Flow2), 

Flow2=(requestFloor->Flow2|requestFloor->Flow3), 

Flow3=(liftstop->Flow4), 

Flow4=(openliftdoor->closeliftdoor->Flow1|notopendoor->Flow1). 

The graphical representation of the above LTS model is shown in Figure 14. 

 
Fig. 14: Second refinement of entire system 

 Simulation and verification of system behavior 
We use the LTSA tool to simulate the final behavioural model of the system. The simulation result is 

shown in Figure 15. 
It can be seen that after the Liftmove event occurs, the RequestFloor event can occur one or more times 

before the Liftstop event can occur. This is in line with the system requirements, because only after the 
passengers press the floor button, the elevator will stop in a certain floor. The event traces of model also 
show that it satisfies the three control flow requirements described in Table 1. 

 
Fig. 15: Simulation of system behaviour 

We used the LTSA tool to verify the safety property of the final elevator control system's behavior 
model. The results show that the model is deadlock-free. 

3.3. Comparison with atomicity decomposition(AD) method 

By comparing we found that the AD method is good at description of the relationship between different 
refinement levels, but it cannot express event orders intuitively. iUML-B state machine is more intuitive in 
expressing the event order at the same level, but cannot express the refinement relationship between different 
levels. Moreover, the AD plug-in has some constraints in the Event-B code generation. Sometime we need 
add control variable manually, while iUML-B state machine can generate Event-B control code without 
manual operations.  

4. Conclusion 

In this paper, we have proposed a method to construct an Event-B control flow model using iUML-B 
state machine, which explicitly expresses the control flow of the Event-B model by state transitions. The 
control flow model constructed with the iUML-B state machine can automatically generate Event-B's state 
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control variables to control the event traces of the model. Furthermore, we have mapped iUML-B state 
machine to a LTS behavioural semantic model, this allows us to verify the behaviour properties of the 
system as early as possible. 

In the future, we will use a variety of temporal logic properties to constrain the behaviour of the system 
model, and get the corresponding Event-B control flow model. 
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