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Abstract: In order to compensate MEMS gyroscope random error, a new method employing the square-
root risk-sensitive unscented Kalman filter (SR-RSUKF) and a nonlinear model is proposed. The nonlinear 
model based on ARIMA takes model parameters as states, and thus realizes the online model estimation. The 
SR-RSUKF deals with non-additive noise items through augmented state vector, and employs a square root 
algorithm to get well numerical stability, and improves the flexibility by extending scalar risk parameters to a 
risk sensitive matrix. In experiments, the raw sample data is processed with three methods using different 
models and filters. And the results show that the SR-RSUKF together with the nonlinear model provide a 
competent solution to compensate MEMS gyroscope random error. 
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1. Introduction 

Because of small size, inexpensiveness and power efficiency, MEMS gyroscopes have been widely used 
in navigation and other fields [1]. But their low accuracy limits application effect greatly. MEMS gyroscope 
error can be divided into deterministic error and random error [2]. A method to compensate the random error 
is given in [3], which use linear models and the Kalman filter. In [4], a nonlinear error model is proposed and 
the particle filter is applied to eliminate the random error. Risk-sensitive filter [5][6] which optimize an 
exponential cost function has show robustness to parametric uncertainties. In this paper, we apply the 
nonlinear model [4] with square-root risk-sensitive unscented Kalman filter (SR-RSUKF) to compensate  
random error. The filter which is based on the risk-sensitive unscented Kalman filter (RSUKF) [7] has the 
following characters: being applicable to models with non-additive noise items, employing non-scalar risk 
sensitive factor [8] and applying square root algorithm which is used in the square-root unscented Kalman 
filter (SR-UKF) [9].  

2. The Nonlinear Model 

MEMS gyroscope random error, denoted as kx , can be described using ARIMA model. In this paper, the 
degree of autoregressive, moving average and difference operation are all chosen as one. Then, kx  is written 
as: 
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121)1(   kkkkk aaxxx                                                               (1) 
where φ is the autoregressive coefficient, θ is the moving average coefficient, and ka  is the white noise.  Let 

ka   be normally distributed: )1,0(~ Nak , then equation (1) can be represented as: 
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where 1  and 2  are coefficients whose value depend on the error character. Hence, the state and 
measurement equations can be written as: 
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where T

kkk xxX ][ 1 , T
kkk aaW ][ 11   , and the process noise W  and measurement noise V  are assumed 

to be uncorrelated and normally distributed with covariance Q  and R respectively. 
Obviously, equation (3) and (4) compose a linear model for random error, which is named as model L in 

this paper.  The Kalman filter can be applied using model L to process random error. In fact, the model 
parameters are affected by the environment where the gyroscope is working. To improve adaptive 
performance of the random error model, the model parameters are regarded as state variables [4], resulting in 
a new state vector T

kkkkkk xxX ][ 21
1  . The corresponding new model is represented as: 
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  kkk VXZ  00001                                                                           (6) 
Compared with model L, the new model, named as model NL, realizes online estimation of model 

parameters. However, it’s a nonlinear model with non-additive noise items.  

3. Square-Root Risk-Sensitive Unscented Kalman Filter 

Risk-sensitive filter has show more robustness to parametric uncertainties than risk-neutral filter. The 
fundamental difference between risk-sensitive filter and Kalman filter, which contribute to the robustness, is 
that the former minimizes an exponential cost criterion rather than the variance of estimation error. The 
exponential cost criterion is: 
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where Φ is the function to be estimated and its argument is the state variables X, the subscript k denote the 
instant, ̂  and *̂  denote the estimate and optimal value respectively, 1 and 2  are risk parameters, and 
functions 1  and 2  are both strictly convex, continuous and bounded from below, attaining global minima 
at 0. The minimum risk-sensitive estimate is defined by 
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If the state variables themselves are to be estimated and both  1  and 2   are quadratic functions of 
vectors in the form  T)( , the recursion form of risk-sensitive filter for prior estimation [7] can be 
written as: 
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where 1|
ˆ

kkX  is the optimal estimate, kk |1  represents an information state [5] ,   is a parameter, and 
)|( 1 kk XXf   and )|( kk XZg  are probability density functions: )|(.)|( |11 kkkkk XPXXf   , 

)|(.)|( | kkkkk XPXZg  . 
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As the integral in (9) is intractable, the RSUKF, an approximate version of the recursion, is given in [7], 
which is based on the UT Transform and some assumptions. In order to expand applicable scope of the 
RSUKF and enhance its performance, the following improvements are made: firstly, an augmented state 
vector is employed to deal with the non-additive noise items; secondly, to get better numerical stability, the 
SR-UKF is used for reference, which utilize QR decomposition and Cholesky factor updating to guaranteed 
positive semi-definiteness of the state covariance; lastly, the scalar risk parameter is replaced by a risk 
sensitive matrix in diagonal form, which can improve the flexibility of application. The new algorithm, 
named as SR-RSUKF, is described as follow. 

(1) Filter initialization: 
 )(),,(,]0,ˆ[ˆ

000000 PcholSQPdiagPXX rTr                                       (11) 
where 0X̂ , rX0

ˆ  and 0 are initial values of the augmented state vector, real state vector and noise items 
respectively, 0P , rP0  and Q  are the corresponding initial  covariances, ()chol  realize the Cholesky 
decomposition and return the lower triangular matrix. 

For },...,1{ k : 
(2) Time updating: 
Calculate sigma points 1k  with 1

ˆ
kX  and 1kS : 
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Update them through process dynamics F: 
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Get the prior estimation: 
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and κ are UT Transform parameters, n is the dimension of 1
ˆ

kX , ()qr  realize QR decomposition and return 
the transpose of the upper triangular part of the right factor, and ()cholupdate  realize the rank 1 update of 
Cholesky factor. 

(3) Risk-sensitive updating: 
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where ),...,( 1 ndiag    is the risk sensitive matrix. 
(4) Measurement updating 
Recalculate sigma points 1| kk  with 1|

ˆ
kkX  and 1| kkS : 
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Update them through measurement equation H: 
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Calculate the mean and covariance: 
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Calculate the Kalman gain: 
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Get the posterior estimation: 
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(5) Noise states resetting: 
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where nr is the dimension of real state vector, and T
kkk SSP  . 

4. Experiments and Analysis 

The performances of model NL and SR-RSUKF are examined with experiments, in which raw 
gyroscope data is processed with three methods. 

The raw data samples are collected in static condition using miniature inertial measurement unit MTi-
28A53G35 equipped with MEMS gyroscopes. The sampling frequency is 100 Hz, and the duration is 60 
seconds while the environment temperature range from 37.8℃ to 40.1℃. The methods used to compensate 
random error are: method 1 which employ model L and strong tracking Kalman filter (STF) [10]; method 2 
which employ model NL and SR-UKF; method 3 which employ model NL and SR-RSUKF. The raw data 
and compensated data are plotted in figure 1. Further, the Allan variance is applied to analysis the 
experiment data and the results are presented in figure 2. 

                                         
(a)                                                                                          (b)    

 
    (c) 

Fig. 1: (a) Raw data and compensated data with method 1. (b) Raw data and compensated data with method 2. (c) Raw 
data and compensated data with method 3. 

 
Fig. 2: Allan variance of raw data and compensated data. 
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We can see from Figs. 1 and 2 that method 2 and 3 are apparently superior to method 1. The contrast is a 
reflection of the difference between model L and model NL. In fact, STF has well adaptability, but the 
contrast suggest that the model is a more important factor, and model NL is more qualified to describe the 
MEMS gyroscope random error. In addition, method 3 exhibit better performance than method 2, which 
verify that the introduction of risk-sensitive has improved the robustness of filter.  

5. Conclusions 

Compared with the linear model, the nonlinear model which realizes online parameter estimation is more 
qualified to describe MEMS gyroscope random error. The SR-RSUKF based on RSUKF, can handle the 
nonlinear models with non-additive noise items; has well numerical stability inherited from the SR-UKF and 
is more robust than the later. The SR-RSUKF together with the nonlinear model provides a competent 
solution to compensate MEMS gyroscope random error. 

6. Acknowledgements 

This research is supported by National Natural Science Foundation of China (Project 61273082). 

7. References 

[1] Priydarshi, Raman Jaiswal, Renju C Nair, Naveen Krishna Yarlagadda, A Ashok Kumar Senapati, Prabhushetty 
Mulage, “Adaptive gyroscope drift compensation based on temporal noise modeling”, 2016 International 
Conference on Microelectronics, Computing and Communications (Micro Com), 2016, pp1-5. 

[2] Zhang Yulian, Chu HaiRong, Zhang Hongwei, Zhang Mingyue, CHEN Yang, LI Yin-hai, “Characterists and 
compensation method of MEMS gyroscope random error”, Chinese Optics, Vol.9,  No.4, Aug.2016, pp501-508. 

[3] Yuan Gannan, Liang Haibo, He Kunpeng, Xie Yanjun, “Analysis and Application of State Space Model for 
MEMS Gyro Random Drift”, CHINESE JOURNAL OF SENSORS AND ACTUATORS, Vol.24,  No.6,  June. 
2011, pp853-858. 

[4] Xiong Jian, “Research on Particle Filtering Technique and Its Application in Strap down Inertial Navigation 
System with Fiber Optic Gyro”, Nanjing University of Aeronautics and Astronautics, College of Automation 
Engineering, December, 2010, pp42-47. 

[5] BOEL R.K., JAMES M.R., PETERSON I.R., “Robustness and risk sensitive filtering”, IEEE Trans. Automatic 
Control, Vol.47, No.3, Mar. 2002, pp. 451–461. 

[6] BANAVAR R.N., SPEYER J.L, “Properties of risk-sensitive filters/estimators”, IEE Proc. Control Theory Appl., 
Vol.145, No.1, Jan. 1998, pp. 106–112.  

[7] S. Bhaumik ; S. Sadhu ; T.K. Ghoshal, “Risk-sensitive formulation of unscented Kalman filter”, IET Control 
Theory & Applications, Vol.3,  No.4,  April 2009, pp375-382. 

[8] Arunasish Acharya, Smita Sadhu, T. K. Ghoshal, “Risk sensitive Kalman filter with non-scalar risk-sensitive 
factor”, 2010 Annual IEEE India Conference (INDICON), 2010, pp1-4. 

[9] R. Van der Merwe,  E. A. Wan, “The square-root unscented Kalman filter for state andparameter-estimation” 2001 
IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001, pp 3461-3464. 

[10] Mengyin Fu, Zhihong Deng, Jiwei Zhang, “Kalman filtering theory and its application in navigation system”, 
Science Press, Beijing, China, Apr. 2010, pp135-139. 

1173

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.S.%20Bhaumik.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.S.%20Sadhu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.T.K.%20Ghoshal.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4079545
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4079545
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.%20Van%20der%20Merwe.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.E.%20A.%20Wan.QT.&newsearch=true
http://ieeexplore.ieee.org/document/940586/



