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Abstract. Principal component analysis (PCA) is a multivariate statistics technique that uses an orthogonal 
transformation to convert a set of observations of possibly correlated variables into a set of values of linearly 
uncorrelated variables called principal components. The aircraft integrated condition index is the important 
parameter to measure the aviation maintenance support capability. It is indispensable to scientifically analyze 
aircraft condition index data and to make scientific decisions on aviation maintenance to improve 
maintenance support capability. Aircraft integrated condition involves a large number of indexes, which is 
more difficult to monitor and evaluate. This paper presents a method of aircraft integrated condition 
monitoring and evaluation based on principal component analysis model, then gives its mathematic model 
and algorithm steps in detail. This method integrates multiple indexes by principal component analysis, uses 
the cumulative variance contribution rate to identify the principal component variables, and turns many index 
questions into less overall targets. To extract the most important information from the original data eliminates 
the information redundancy between the samples, and reduces the index dimension, so that the aircraft 
integrated condition monitoring and evaluation problems are simplified. The practical applications and 
results analysis show that the PCA-based method is feasible and effective for aircraft integrated condition 
monitoring and assessment. 
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1. Introduction 

With the rapid development of aviation equipment, there are a lot of monitoring and assessment 
problems in the aviation maintenance support. To carry out effective monitoring and assessment of aircraft 
integrated condition, for the promotion of aviation maintenance work targeted, predictive, and promote 
scientific maintenance of aviation equipment plays a very important role. Aircraft integrated condition index 
data is becoming more and more complex. Therefore, there is an important significance to develop an 
effective approach to aircraft integrated condition monitoring and assessment. Principal component analysis 
(PCA) is a linear dimensionality reduction technique [1, 2]. PCA is a technique used to emphasize variation 
and bring out strong patterns in a dataset. It's often used to make data easy to explore and visualize [3]. PCA 
method can generalize lower dimensional representation of the original data, in terms of capturing the data 
direction that has the largest variance [4]. PCA is commonly used as one step in a series of analyses. For a 
comprehensive introduction to PCA, the reader is referred to [5]. PCA has been widely used to monitor the 
aircraft integrated condition with multiple variables and evaluate aviation maintenance support ability.  

2. The Mathematical Model of Principal Component Analysis 

Suppose the study object is n samples, p variable data (n>p). We can represent the original data as the 
following matrix [6]: 
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Linear transformation of X can form a new integrated variableY : 

Y XU                                                                                         (2) 

where 1 2( , , , )pY Y Y Y , 1 2( , , , )pU u u u .  
The k-th integrated variable is: 

 
k kY Xu                                                       (3) 

where ku  is the coefficient of linear transformation. 
According to the requirements of the PCA, the following constraints are applied to the linear 

transformation: (1) Yi  is not related to Yj ( ; , 1, 2, ,i j i j p  ); (2) Y1 is the largest variance in all linear 
combinations of X1, X2,…, Xp, Y2  is the largest variance of all linear combinations of X1, X2,…, Xp that are 
not related to Y1, Y2,…, Yp …, Yp is the largest variance of all linear combinations of X1, X2,…, Xp that are 
not related to Y1, Y2,…, Yp; (3) 2

1
1p

iki
u


 , that is 1k k

 =u u . 
The resulting integrated variable Y1, Y2,…, Yp  are the first, second, and p-th principal component of the 

original variable, respectively. 

3. The Algorithm Steps of Principal Component Analysis 

3.1. Calculate the Correlation Matrix 

To calculate the correlation matrix of the standardized matrix R : 
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3.2. Calculate the Eigenvectors and Eigenvalues to Determine the Principal Components 

Using Jacobi method to solve the characteristic equation of the correlation coefficient matrix R , we 
obtain the eigenvalues λ1, λ2,…, λp (λ1  λ2  …  λp), and the corresponding eigenvector 

1 2( , , ) , 1,2, ,i i i ipe e e i p e . 
Then its eigenvalues i and corresponding eigenvector ie of coefficient matrix R , can be also computed 

respectively as follows: 

 0 R I                                                    (5) 

  i i  I R e 0                                                  (6) 

where R  is the Correlation coefficient matrix, I  is the p-order unit matrix,  (1), (2), , ( )i i i i n e e e e .  

3.3. Calculate the Variance Contribution Rate  

The variance contribution rate of the k-th principal component kY : 
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The cumulative variance contribution of the former m principal components 1 2, , , mY Y Y : 
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In general, the number of principal components k value is determined by the variance contribution 
rate

1
85%m

ii



 . 

3.4. Comprehensive Evaluation of Principal Component 

First, calculate the linear weighting of each principal component: 
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And then k principal components of the weighted sum, that is, the final evaluation value. The weight is 
the variance contribution rate of each principal component. 
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where i  is the variance contribution rate of the i-th principal component. 

4. An Application Example 

4.1. Problem Description 

The seven aircraft integrated condition index data of 20 aircrafts in five years: flight sorties, flight time, 
intact rate, all state intact rate, maintenance grounding rate, failure rate, air failure rate is shown in Table 1. 
Try to evaluate integrated condition for each aircraft. 

Table 1: Aircraft Integrated Condition Index Data in Five Years 

Aircraft 

ID 

Flight Sorties 

(X1) 

Flight Time/h 

(X2) 

Intact Rate/% 

(X3) 

All State 

Intact Rate/% 

(X4) 

Grounding 

Rate/% 

(X5) 

Failure 

Rate/% 

(X6) 

Air Failure 

Rate/% 

(X7) 

1 651 868.72 83.16 78.56 11.81 20.14 2.19 
2 609 857.98 89.68 85.45 7.16 22.96 3.03 

3 618 845.86 89.14 82.12 5.91 19.15 2.60 
4 556 747.63 90.16 85.66 6.61 21.40 3.08 

5 634 848.45 92.09 87.33 4.43 20.98 2.83 
6 537 719.60 86.01 79.68 7.78 23.76 3.20 
7 562 767.53 83.60 78.24 11.33 22.15 3.26 

8 583 805.36 88.25 80.11 6.07 20.36 2.98 
9 616 794.78 78.18 70.05 12.66 21.89 3.27 

10 613 853.89 86.69 81.23 6.79 13.94 0.82 
11 489 662.80 85.13 80.41 10.76 17.95 3.47 
12 660 839.35 91.86 86.35 4.52 15.73 2.50 

13 632 876.00 84.65 78.09 11.13 17.35 2.28 
14 601 821.15 86.72 81.27 9.76 18.27 1.70 

15 642 853.71 91.56 87.59 4.16 19.56 3.16 
16 630 812.75 85.95 78.99 6.47 19.25 2.42 

17 627 851.33 86.42 82.31 8.62 17.74 2.58 
18 538 784.10 89.33 85.01 4.90 19.39 3.32 
19 577 767.46 89.56 80.98 5.95 17.07 3.78 

20 502 724.78 92.36 86.37 3.51 19.45 2.48 

4.2. Analysis Process  

Calculate the Correlation Coefficient Matrix. According to the correlation between the two index data, 
calculate the correlation coefficient of the index data. For the same index data, the correlation coefficient is 1, 
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with 1 as the boundary, the diagonal elements take the same value. According to the Eq. (4), we can get the 
correlation coefficient matrix R . 

 1.000 -0.913 -0.204 0.057 0.064 0.147
-0.913 1.000 0.184 -0.068  -0.092 -0.152
-0.204 0.184 1.000 0.517 -0.283 -0.280
 0.057 -0.068 0.517 1.000 -0.294 -0.360
 0.064 -0.092 -0.283 -0.294   1.000 0.920
 0.147 -0.152 -0.280 -0.360 0

R

.920   1.000

 
 
 
 
 
 
 
 
 

 

Calculate the Eigenvectors and Eigenvalues. That is, the eigenvalues and eigenvectors of the 
correlation matrix R  are calculated. 

According to the Eq. (5) to calculate the eigenvalue: 

 =   2.8288,  2.4312,  1.0293,  0.4230,  0.1951,  0.0684,  0.0242   

According to the Eq. (6) to calculate the corresponding eigenvectors as shown in Table 2. 

Table 2: Eigenvectors of the Correlation Matrix 

Variables PC1 PC2 PC3 PC4 PC5 PC6 PC7 

X1 0.071  0.551  0.428  0.262  0.086  0.658  0.000  
X2 0.134  0.560  0.379  -0.002  -0.114  -0.715  0.001  
X3 0.574  -0.139  0.046  -0.005  -0.091  0.038  0.799  
X4 0.554  -0.117  0.066  -0.175  -0.611  0.145  -0.500  
X5 -0.546  0.130  -0.040  -0.063  -0.750  0.099  0.327  
X6 -0.185  -0.323  0.693  -0.601  0.120  0.063  0.044  
X7 -0.088  -0.478  0.430  0.732  -0.144  -0.143  -0.050  

 

Determine the Principal Components. In order to determine the number of principal components, the 
cumulative variance contribution rate should be calculated first. 

According to the Eq. (7) and Eq. (8) to calculate the variance contribution rate and cumulative variance 
contribution as shown in Table 3. 

Table 3: Total Variance Explained 

Component 
Initial Eigenvalue Extraction Sums of Squared Loadings                

Total Variance/% Cumulative/% Total Variance/% Cumulative/% 

1 2.829 40.411 40.411 2.829 40.411 40.411 
2 2.431 34.731 75.142 2.431 34.731 75.142 
3 1.029 14.705 89.847 1.029 14.705 89.847 
4 0.423 6.043 95.890    
5 0.195 2.787 98.677    
6 0.068 0.978 99.655    
7 0.024 0.345 100.000    

 
It can be seen from Table 3 that the first three eigenvalues are greater than 1 and the cumulative 

contribution rate is over 85% (89.847%), which indicates that the information reflected in the six aircraft 
maintenance index data can be reflected by three principal components, which explain 89.847% of total 
variation of variables in PCA. 

After conducting PCA, we found that the first three PCs explained 89.847% of the process variation. 
Thus, we only used the first three PCs to obtain the variables. Therefore, the expression of the principal 
component can be calculated according to Eq. (9) and Table 2: 

1 2 3 4 5 6 71 0.071 0.134 0.574 0.554 0.546 0.185 0.088PC X      X X X X X X  

1 2 3 4 5 6 72 0.551 0.560 0.139 0.117 0.130 0.323 0.478PC X      X X X X X X  

1 2 3 4 5 6 73 0.428 0.379 0.046 0.066 0.040 0.693 0.430PC X      X X X X X X  
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4.3. Result Analysis 

From the analysis of Fig.1 that: The first principal component includes intact rate (X3), all state intact 
rate (X4) and grounding rate (X5); the second principal component includes flight sorties (X1) and flight 
time (X2); the third principal component includes failure rate (X6) and air failure rate (X7). 

The analysis shows that the first principal component is expressed as the maintenance support capability, 
the second principal component is expressed as the strength of the aircraft, and the third principal component 
is expressed as the inherent reliability of the aircraft. 

In order to visually display the assessment result, the distribution state of the principal component score 
may be represented by a score plot. The main component of the eigenvalue is the coordinate axis, which 
shows the main component score state, as shown in Fig.2. It can be seen from the figure, for the first 
principal component, the more the point on the right side, indicating the greater the aircraft maintenance 
support capacity; for the second main component, the upper point, indicating the greater use of aircraft 
strength. 
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Fig. 1: Loading plot of aircraft integrated condition.                 Fig. 2: Score plot aircraft integrated condition. 

5. Conclusion 

Aiming at the aircraft integrated condition monitoring and assessment, an effective approach based on 
PCA is put forward. Based on the principle of principal component analysis, the mathematical model and 
algorithm steps are given in detail. In order to improve the operability of the method, taking the aircraft 
integrated condition index data as an example, this paper discusses how to use the PCA-based method to 
monitor and evaluate the aircraft integrated condition. And the visual analysis results are presented 
graphically. The results show that the method proposed in this paper is an effective monitoring and 
assessment approach to aircraft integrated condition. The method can also be applied to other multivariate 
evaluation issues in the field of aeronautical equipment maintenance support. 
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