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Abstract. Fault transient signal detection is very important to make the power system work safely and 
improves the quality of power energy. This paper proposes a fault detection method of transmission line in 
power system, which based on detection of high frequency components contained in a fault signal spectrum. 
The Discrete Wavelet Transform (DWT) is used to detect and identify the transmission line fault as well as 
determine the involved phases. The entropies of wavelet coefficients of the measured bus currents are applied 
in the proposed technique. Simulation is performed using MATLAB program.  
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1. Introduction 

The importance of power system protection plays a great role in the successful operation of power 
system [1-3]. Traditionally, radial networks are protected using coordinated overcurrent relays whereas 
meshed networks using directional overcurrent relays [4]. With the expansion of the power system and 
consumer’s higher quality requirement, the fault signal detection method must be improved greatly. 
Researchers have introduced wavelet analysis, mathematical morphology, and supporting vector machine 
into the identification of transient signals. Accordingly, progress has been made especially in the fields of 
faulty phase identification, power quality disturbance, lightning, temporary and permanent fault 
identification [5–7]. 

The transient waveforms of current and voltage resulting during the fault has been thoroughly discussed, 
and different methods were employed in analyzing such waveforms. Some researchers used neural networks 
in identification of fault types [8], others used wavelet analysis for fault detection and identification [9]. With 
further research, new theories and concepts emerge continually [12, 13]. For example, the wavelet entropy, a 
combination of wavelet and entropy, could describe the characteristics of a signal. This is because wavelet 
meets the demands of transient signal analysis and entropy is ideal for the measurement of uncertainty. 
Based on such transformation, the wavelet energy entropy in association with neural-fuzzy inference system 
is used for fault classification [14]. The wavelet entropy principle has been employed in different 
applications in power system [15-16]. In [17–19], wavelet transformation generated time-frequency 
parameters and wavelet entropy generated characteristic vector. These characteristics were put into neural 
network to detect the transient fault, then a fuzzy system was used to identify the fault. 

This paper concludes the following contents: Section II provides the principle of wavelet entropy and 
calculation of wavelet entropy weight. Section III simulates a system to obtain different current signals for 
testing of the proposed technique. Section IV presents the testing results and gives a discussion of advanced 
methods for fault diagnosis of power system transmission line. 
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2. The Principle of Wavelet Entropy  

2.1. Wavelet transform 

Transient signals are basically with high frequency and instant break. Usually, wavelet transform of 
transient signal is expressed by multi-revolution decomposition fast algorithm which utilizes the orthogonal 
wavelet bases to decompose the signal to components under different scales. It is similar to recursively 
filtering the signal with a high-pass and low-pass filter pair. The approximations are the high-scale, low-
frequency components of the signal produced by filtering the signal by a low-pass filter. The details are the 
low-scale, high-frequency components of the signal produced by filtering the signal by a high-pass filter. The 
bandwidths of these two filters are equal. After each decomposition, the sampling frequency is reduced by 
half. Then recursively decompose the low-pass filter outputs to produce the components of the next stage [9, 
10]. Fig. 1 shows the tree structure implementation of filter-banks for one-dimensional DWT, where g(n) 
stands for the high-pass filters, h(n) for the low-pass filters, and the arrows for the down sampling process. 
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Fig. 1: Implementation of DWT using filter-banks 

2.2. Calculation of wavelet entropy weight 

Given a discrete signal 𝑥(𝑛) which is fast transformed at instant k and scale j with a high-frequency 
component coefficient Dj (k) and a low-frequency component coefficient Aj (k). The frequency band of the 
information contain in signal components Dj (k) and Aj (k), obtained from reconstruction are as follows [11]. 
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where sf  is the sampling frequency.The original signal sequence 𝑥(𝑛) can be represented by the sum of all 
components as shown [11]. 
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Various wavelet entropy measurements were defined in [9]. In this paper, the non-normalized Shannon 

entropy will be employed. The non-normalized Shannon entropy is as define [11]. 

logj jk jk
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where jkE is the wavelet energy spectrum at scale j and instant k. As defined by, 

2
( )jk jE D k       (4) 

Actually, different wavelet basis functions have been proposed and selected in [20]. There are two 
criteria for the selection of the mother wavelet in power system relay protection. Initially, the shape and the 
mathematical expression of the wavelet must be set according to easy physical interpretation of wavelet 
coefficients. Secondly, the chosen wavelet must allow a fast computation of wavelet coefficients. The 
Daubechies wavelet has been proven efficient in signal analysis. And in our latter proposed scheme, the 
Daubechies 10 (db10) order orthogonal wavelet is employed after comparison. 

3. The Proposed Algorithm 

The amplitude and frequency of the test signal will change significantly as the system status varies from 
normal to fault, and the Shannon entropy of the signal will change accordingly. It becomes incapable of 
dealing with some abnormal signals while the wavelet is capable. The wavelet combined entropy can make 
full use of localized feature at time-frequency domain. Wavelet deals with unsteady signal while information 
entropy expresses signal information. The three phase current signals (ia, ib and ic) and the ground current ( gi
= ai  + bi + ci  ) are inputs of the proposed algorithm. 
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3.1. Fault detection and phase selection  

Transient mutation signal and weak signal could be analyzed by wavelet accurately, and their fault 
characteristics could be extracted effectively. In the proposed algorithm, suma, sumb, sumc represent the 
sum of the entropy values for three phase currents respectively, and max1=max (suma, sumb, sumc), 
min=min (suma, sumb, sumc), max2 = the remaining sum (intermediate value).The steps are as followed: 
Initially, enter three phase currents of a line and calculate its ground current; Secondly, the line current signal 
is decomposed by wavelet transform to calculate the entropy of the wavelet coefficients of each phase 
current; Thirdly, the sum of the absolute entropy of the wavelet coefficients of each phase is calculated and 
the maximum phase, the minimum phase and the intermediate phase are obtained. Finally, determine 
whether line fault occurs in the input current signal, confirm the fault type and the fault phase at the mean 
time. 

3.2. Flow chart  
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Fig. 2: Flow chart of fault detection and phase selection algorithm 

The flow chart of the algorithm mentioned above is as shown in Fig.2. 

3.3. Parameter setting 

In total, three parameters as alpha1, alpha2 and alpha3 are set, where alpha1 and alpha3 are set for 
comparing min phase and sumg. When fault is not occurred in the system, the value of sumg is much smaller 
than that of the other three phases. Initially set alpha1 to 2.0, after fault detection, adjust alpha1 to 10.0 based 
on system diagnostic accuracy, which also meets the magnitude difference between min phase and sumg. 
When ground fault is occurred, the value of sumg will be extremely high. The parameter alpha3 is set to 1.0 
to compare the value of the sumg and min phase. When phase-to-phase short-circuit fault is occurred, the 
current value of two phases will surge inevitably, so in order to determine whether phase short circuit is 
occurred, set parameter alpha2 to compare the intermediate phase max2 and the smallest phase min. 

In order not to miss the possible faults, alpha2 is initially set to 5.0. According to the actual data analysis, 
some fault-free data will be mistakenly diagnosed as fault status. Ultimately, alpha2 is adjusted to 12.0 based 
on the actual data analysis process. 

4. Case Study 

In order to further verify the accuracy of the algorithm, the recorded data of typical moments per day and 
that of typical moments per year in Shandong province is specially chosen to take statistical analysis 
respectively. 

4.1. Typical faults simulation 

The proposed algorithm detects if there is a fault or the system is under normal conditions. It also 
determines the actual fault type from single line to ground (SLG) fault, line-to-line (L–L) fault, double line to 
ground (DLG) fault or a three line to ground (3LG) fault. At the same time, the algorithm could achieve 
phase selection involved in the fault. From the statistical data, only two typical faults (SLG fault and phase-
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to-phase short circuit fault) in the power system are detected in detail, and the concrete simulation results are 
given. 

         
 Fig. 3: B phase ground short circuit fault                       Fig. 4: AC phase-to-phase short circuit fault 

In Fig. 3, it can be concluded that there is B phase ground short circuit fault. B-phase current increases at 
250ms, where its amplitude increases significantly compared to that of the other two phase currents.  

In Fig. 4, it can be seen that there is AC phase-to-phase short circuit fault. AC phase-to-phase current 
increases at 200ms, where its amplitude increases significantly compared to that of B-phase current.  

4.2. Testing results 

The sample data in Table 1 are selected from a multiple-fault-occurred representative day of Shandong 
province. Analysis based on wavelet transform and diagnostic results of the recorded data are as shown. 

Table 1: Analysis based on wavelet transform and diagnostic results of a representative day 

Line suma sumb sumc sumg diagnostic result 
1 1.6767E-23 2.0632E-23 2.5910E-23 5.2299E-26 Fault-free 
2 3.4010E-23 5.2689E-23 1.7875E-23 7.9562E-26 Fault-free 
3 8.4717E-23 8.6799E-23 8.5597E-23 2.3941E-27 Fault-free 
4 8.2797E-23 9.9444E-23 1.0638E-22 2.2932E-27 Fault-free 
5 1.3820E-23 1.9728E-23 2.9062E-23 9.1531E-26 Fault-free 
6 7.5909E-23 8.8152E-23 7.1935E-23 2.4656E-27 Fault-free 
7 8.2111E-23 1.0053E-22 6.8183E-23 2.0860E-27 Fault-free 
8 6.8338E-23 6.7814E-23 7.1928E-23 4.8781E-25 Fault-free 
9 1.1103E-24 7.4640E-24 1.0449E-24 1.2576E-24 Fault-free 
10 8.2648E-22 5.5054E-25 8.4153E-22 2.5489E-27 AC phase-to-phase fault 
11 1.6007E-22 2.5532E-21 1.0525E-22 1.9851E-21 B phase-to-ground fault 
12 1.2759E-23 2.3765E-22 2.5886E-23 1.4774E-22 B phase-to-ground fault 
13 2.5194E-22 2.0499E-22 1.8481E-22 8.9668E-26 Fault-free 
14 3.3441E-24 5.2703E-24 3.9194E-24 5.6010E-25 Fault-free 
15 2.2754E-22 2.2714E-22 2.2037E-22 3.0060E-26 Fault-free 
16 1.5570E-22 2.5008E-21 1.0541E-22 1.9570E-21 B phase-to-ground fault 
17 1.5323E-22 2.5133E-21 1.0356E-22 1.9652E-21 B phase-to-ground fault 

 
It can be seen from Table 1 that the sum of the absolute entropy of the three-phase current of lines 10, 11, 

12, 16, 17 differ significantly from the other lines on the order of magnitude. It could be concluded that 
faults occur in the above lines. The algorithm proposed above is used to determine the diagnostic results with 
the help of MATLAB program. Compared with the final fault report from the power supply company in the 
region, all the 17 fault detection results in the table are correct by the algorithm. The correctness rate is 100%, 
significantly verifies the algorithm. 
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5. Conclusion 

Compared with traditional relatively independent diagnosis of line fault and phase fault, this paper 
proposes a line-phase combined algorithm based on wavelet transform to quickly detect whether sudden 
changes occur and determine the fault location and the fault type. The algorithm proposed in this paper is 
simple and fast, and works well in assisting schedule personnel to determine fault location and fault type.  

However, there are still some future work that could be continued. The parameters set in the algorithm 
are from the actual data acquisition, which may not be accurate due to the limitation of sample amount. Also, 
the two-phase short-circuit ground fault and three-phase short-circuit ground fault have not been diagnosed 
in the statistical data we got, thus the simulation of the specific example could not be given in this paper. 

Further work could perform in simulating larger amount of data, setting the parameters with enough 
samples, improving the diagnostic accuracy, and setting the upper and lower bounds of the parameters to 
improve the detection accuracy.  
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