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Abstract. In this paper, we present a distributed Gaussian particle filter based on Mahalanobis distance 

(DGPF-MD) for target tracking in wireless sensor networks. The proposed algorithm consists of three major 

steps. First, a sensor selection scheme is performed to reduce the cost of transmission among sensors with 

high accuracy. Second, a distributed Gaussian particle filter is adopted for each selected sensor to estimate 

the local statistics. Third, during weighted average fusion, the global estimate is based on the utility of the 

data provided by the member sensors, which is characterized as MD between the sensor and predicted target 

position. Compared with the centralized particle filters (CPFs), our experimental evaluations show that the 

DGPF-MD has more acceptable complexity, lower communication cost, and shorter tracking latency. 

Keywords: Wireless sensor network, Gaussian particle filtering, distributed particle filter, target tracking, 

Mahalanobis distance 

1. Introduction 

Wireless sensor networks (WSNs) [1] contained a large number of scattered low-cost sensor nodes, 

which can provide rich and complex information. As a very important class of WSNs applications, target 

tracking [2] studies the dynamic state estimation by modeling the state space as a stochastic process evolving 

over time. 

For dynamic state estimation such as target tracking, particle filter (PF) is one of the most widely used 

methods [3]. Distributed particle filters (DPFs) for collaborative tracking in WSNs have been received 

significant attention [4] recently. In [5], an average consensus filter is used to estimate global mean and 

covariance of posterior probability. Consensus-based distributed unscented particle filter (CD/UPF) in [6] 

computes global estimate from local estimates during the consensus step, which is based on an optimal 

fusion rule. In [7], the consensus algorithms are adopted to compute the global likelihood function rather 

than the posterior. Consensus-based DPFs are robust to changes in the network topology and to link failures. 

However, each node communicates with all its neighbors through multiple iterations to establish an 

agreement on certain global statistics. The speed of convergence (i.e. number of iterations) affects the 

communication requirements. 

In this work, we propose a distributed PF that does not rely on consensus algorithm. To address the 

distributed collaborative target tracking in WSNs, a dynamic cluster around the target is formed, and a sensor 

selection scheme is also applied to select several informative sensors from the cluster. Each selected sensor 

performs local GPF and estimates local statistics in parallel. To achieve distributed information fusion, a 

weighted average fusion algorithm is employed to estimate global mean and covariance of posterior 

probability. The weights are based on the utility of the data provided by the member sensors, which is 

characterized as Mahalanobis distance (MD) between the sensor and predicted target position. In addition, an 
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unscented transformation (UT) is used to propagate the mean and covariance to generate the predicted 

statistics, as UT incorporates partial high order information of mean and covariance into the estimates for 

non-linear models [8]. Our method can reduce complexity and communication requirements while preserve 

the tracking accuracy. 

The rest of this paper is organized as follows. Section 2 presents the proposed distributed Gaussian 

particle filter based on MD (DGPF-MD). Section 3 analyzes the performance of DGPF-MD in target 

tracking application through simulations. Section 4 makes a conclusion of the paper. 

2. Distributed Particle Filter for target tracking 

For distributed collaborative target tracking in WSNs, it is necessary to form a dynamic cluster around 

the target and properly select the cluster head (CH) and the cluster members during the tracking process. The 

selection of cluster members is based on the information utility, which can be evaluated as MD. The selected 

member nodes receive the target state prediction, perform local PF, and transmit the local estimations to CH. 

The CH fuses the collected information and estimates global statistics. 

2.1. Sensor selection 

Assume that the global estimation and covariance are calculated at time k-1. The CH predicts the state 

and its covariance by the scaled unscented transformation (UT) [8]. Calculate sigma points S𝑘−1
(𝑖)

=

{𝑊𝑚
(𝑖)
,𝑊𝑐

(𝑖)
, 𝜒𝑘−1
(𝑖)

} according to the following scheme. 

{
 
 

 
 𝜒𝑘−1

(0)
= 𝒙𝑘−1

𝜒𝑘−1
(𝑖)

= 𝒙𝑘−1 + (√(𝑛𝑥 + 𝜆)𝑃𝑘−1)
(𝑖)
,   𝑖 = 1, … , 𝑛𝑥

  𝜒𝑘−1
(𝑖)

= 𝒙𝑘−1 − (√(𝑛𝑥 + 𝜆)𝑃𝑘−1)
(𝑖)
,   𝑖 = 𝑛𝑥 + 1,… ,2𝑛𝑥

 (1) 

{
 

 𝑊𝑚
(0)
= 𝜆/(𝑛𝑥 + 𝜆) 

𝑊𝑐
(0)
= 𝜆(𝑛𝑥 + 𝜆) + (1 − 𝛼

2 + 𝛽) 

𝑊𝑚
(𝑖)
= 𝑊𝑐

(𝑖) =
0.5

𝑛𝑥+𝜆
, 𝑖 = 1,2, … ,2𝑛𝑥

                                   (2) 

Where 𝜆 = 𝛼2(𝑛𝑥 + 𝜅) − 𝑛, 𝛼, 𝛽, 𝜅 are the scaling parameters. 𝛼 controls the “size” of the sigma point 

distribution and should be a small number (10−4 ≤ α ≤ 1) . 𝛽  is a non-negative weighting term which 

minimizes the effects from high order terms. For Gaussian distributions, 𝛽 = 2 is optimal.  𝜅 determines the 

approximating precision (usually set to 0). (√(𝑛𝑥 + 𝜆)𝑃𝑘−1)
(𝑖)

 is the ith row or column of the matrix square 

root of (𝑛𝑥 + 𝜆)𝑃𝑘−1 . In this step, the Cholesky decomposition can be chosen as one of the possible 

solutions for square rooting of a matrix. 𝑊(𝑖) is the weight associated with the ith point. 

The transformed sigma points are obtained as follows 

𝜒𝑘|𝑘−1
(𝑖)

= 𝑓(𝜒𝑘−1
(𝑖) )                                                                                                                                         (3) 

The sigma points of the noise 𝐰𝒌 are {0,±(√(𝑛 + 𝜆)𝑸𝒌−𝟏)
(𝑖)
}. The predicted mean and covariance at 

time k are given by 

𝒙𝒌|𝒌−𝟏 = ∑ 𝑊𝑚
(𝑖)
𝜒𝑘|𝑘−1
(𝑖)2𝑛

𝑖=0                                                                                                                            (4) 

𝑷𝒌|𝒌−𝟏 = 𝑸𝒌−𝟏 + ∑ 𝑊𝑐
(𝑖) (𝜒𝑘|𝑘−1

(𝑖)
− 𝒙𝒌|𝒌−𝟏) (𝜒𝑘|𝑘−1

(𝑖)
− 𝒙𝒌|𝒌−𝟏)

𝑇
2𝑛
𝑖=0                                                                 (5) 

Since the predicted target state 𝒙̅𝒌|𝒌−𝟏 at time step k is available, it would be utilized to select sensors. 

According to the statistics theory, the probability density function (PDF) of the target located at coordinate 

X = (𝑥, 𝑦) will be 

p(𝑥, 𝑦) =
1

2𝜋
(det (𝐏𝑘|𝑘−1))

−1/2 exp (−
1

2
(𝑋 − 𝒙𝒌|𝒌−𝟏)𝐏𝑘|𝑘−1

−1(𝑋 − 𝒙𝒌|𝒌−𝟏)
𝑇
)                                               (6) 

Assume that the location of sensors are known, and coordinate of the nth sensor (1 ≤ n ≤ 𝑁𝑠)  is 

S𝑛 = (s𝑥𝑛, 𝑠𝑦n). Thus the probability that the nth sensor can detect the target is 

p(S𝑛) =
1

2𝜋
(det(𝐏𝑘|𝑘−1))

−
1

2 exp (−
1

2
(𝑆𝑛 − 𝒙𝒌|𝒌−𝟏)𝑷𝑘|𝑘−1

−1(𝑆𝑛 − 𝒙𝒌|𝒌−𝟏)
𝑇)                                                 (7) 

Take logarithms on both sides of (4) to obtain 
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log(p(S𝑛)) = 𝐶 −
1

2
(𝑆𝑛 − 𝒙𝒌|𝒌−𝟏)𝑷𝑘|𝑘−1

−1(𝑆𝑛 − 𝒙𝒌|𝒌−𝟏)
𝑇
                                                                           (8) 

 

Wherein C = − log(2𝜋) −
1

2
log(det(𝐏𝑘|𝑘−1)). C is a constant, dependent on the predicted covariance at 

time k. The second part is a form of MD, reflecting the distance between the sensor location and the 

predicted target position. 

MD𝑛 = √(S𝑛 − 𝒙𝒌|𝒌−𝟏)𝐏𝑘|𝑘−1
−1(S𝑛 − 𝒙𝒌|𝒌−𝟏)

𝑇                                                                                              (9) 

A small number of sensors providing the most informative measurements should be chosen as the cluster 

members at each time step. Since the larger MD𝑛, the less utility of the corresponding sensor. We define the 

utility function as 

𝜑𝑢𝑡𝑖𝑙𝑖𝑡𝑦(Sn) = 1 MD𝑛⁄                                                                                                                               (10) 

According to the utility of sensors, the CH chooses M members. M can be changed according to different 

requirement of tracking accuracy. 

2.2. Local GPF (LGPF) 

In distributed estimation, the local particles and their weights are only based on the local observations 

𝒛𝒏,𝒌 , which results in inconsistent state estimates p(𝒙𝒌| 𝒛𝒏,𝒌) across the network. A global fusion (next 

subsection) is introduced to provide consistency in the local estimates. We use Gaussian approximations in 

the context of local UPF as the proposal distribution in which each sensor draws particles according to 

predicted state 𝒙̅𝒌|𝒌−𝟏 and covariance 𝑃̅𝑘|𝑘−1 in (4) and (5). 

(i) At time step k, the selected nodes are assumed to have received the global prediction of the target 

state 𝒙̅𝒌|𝒌−𝟏 and 𝑃̅𝑘|𝑘−1. A new measurement 𝒛𝒏,𝒌 is now available at the local nodes. 

(ii) Sensor n generates N random particles from its proposal distribution 𝑁(𝒙𝒌
𝒊 ; 𝒙̅𝒌|𝒌−𝟏, 𝑃̅𝑘|𝑘−1)  and 

computes their correspondent weights w𝑛,𝑘
𝑖  based on Eq. (13). After this step, node n has a set of particles 

{𝒙𝒏,𝒌
𝒊 , 𝑤𝑛,𝑘

𝑖 }
𝑖=1

𝑁
 that approximate the local posterior distribution p(𝒙𝒌|𝒛𝒏,𝒌). 

(iii) Sensor n computes the MMSE estimation: 

𝒙𝑛,𝑘 = ∑ 𝑤𝑛,𝑘
𝑖 𝑥𝑛,𝑘

𝑖𝑁
𝑖=1                                                                                                                                  (1) 

𝑷̅𝑛,𝑘 = ∑ 𝑤𝑛,𝑘
𝑖 (𝑥𝑛,𝑘 − 𝑥𝑛.𝑘

𝑖 )(𝑥𝑛,𝑘 − 𝑥𝑛,𝑘
𝑖 )

𝑇𝑁
𝑖=1                                                                                                           (2) 

(iv) The final step of the DPF algorithm is the fusion step. A global statistics 𝐱̅𝒌 and 𝐏̅𝒌 is computed from 

the local estimates, which is depicted in next subsection. 

2.3. Estimation of Global Statistics via weighted average 

When receiving the local estimates from the member sensors, CH calculates the global mean and 

covariance of the entire cluster by fusing the local means and covariance respectively. 

𝒙𝑘 = ∑ 𝑤𝑘
𝑛𝒙𝑛,𝑘

𝑁𝑚
𝑛=1                                                                                                                                     (3) 

𝑷𝑘 = ∑ 𝑤𝑘
𝑛(𝒙𝑛,𝑘 − 𝒙𝑘)(𝒙𝑛,𝑘 − 𝒙𝑘)

𝑇𝑁𝑚
𝑛=1                                                                                                      (4) 

Where, the weights are set up based on utility function. The weights are suggested to be inversely 

proportional to the MD 

𝑤𝑘
𝑛 =

𝜑𝑢𝑡𝑖𝑙𝑖𝑡𝑦(Sn)

∑ 𝜑𝑢𝑡𝑖𝑙𝑖𝑡𝑦(Sn)
𝑁𝑚
𝑛=1

=
𝑀𝐷𝑛

−1

∑ 𝑀𝐷𝑛
−1𝑁𝑚

𝑛=1

                                                                                                                       (5) 

Where {𝑤𝑘
𝑛} are adaptive weights, and satisfy normalization metric ∑ 𝑤𝑘

𝑖𝑁𝑐
𝑛=1 = 1. 

2.4. Distributed Gaussian Particle Filter based on MD 

The algorithm is stated in the following. 

In our proposed DGPF-MD scheme, the heavy task of CH is offloaded to small amount of sensors. Each 

selected sensor uses a LGPF to track the local Gaussian approximation N(𝑥𝑛,𝑘; 𝑥̅𝑛,𝑘 , 𝑃̅𝑛,𝑘) of the posterior 

p(𝑥𝑘| 𝑧𝑛,𝑘). The estimate is based on the current local measurements and previous measurement reliability. 

The estimated statistics is transmitted between CH and its members. 
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Algorithm I  Distributed Gaussian Particle Filter based on MD (DGPF-MD) 

1. Initialize random samples {𝑥0
𝑖 }
𝑖=1

𝑁
 drawn from p(𝑥0)~ N(𝑥0; 𝜇0, Σ0), and 𝑤0

𝑖 = 1/𝑁. 

2. At time k-1, assumed that the global estimation 𝒙𝑘  and 𝑷𝑘  are obtained. CH generates the sigma points 

{S𝑘−1
(𝑖)

}
𝑖=0

2𝑛𝑥
 and computes the statistics of prediction distribution 𝒙𝒌|𝒌−𝟏 and 𝑷𝒌|𝒌−𝟏 according to Eq. (1)-(2). 

3. Selected sensor n draw particles {𝑥𝑛,𝑘
𝑖 }

𝑖=1

𝑁
from its local importance distribution 

q(𝑥𝑛,𝑘|𝑧0:𝑘) ~ N(𝑥n,k; 𝒙𝒌|𝒌−𝟏, 𝑷𝒌|𝒌−𝟏) and update their correspondent weights according to Eq.(13). 

Normalize the weights as 𝑤𝑛,𝑘
𝑖 = 𝑤𝑛,𝑘

𝑖 /∑ 𝑤𝑛,𝑘
𝑖𝑁

𝑖=1 . 

4. Sensor n estimate the local statistics 𝒙𝑛,𝑘 and 𝑷̅𝑛,𝑘  according to Eq.(11)-(12). 

5. CH receive the local estimations and calculates the global statistics 𝒙𝒌 and 𝑷̅𝒌 according to Eq.(13)-(14), and 

𝑤𝑘
𝑛 = 𝑀𝐷𝑛

−1/(∑ 𝑀𝐷𝑛
−1𝑁𝑚

𝑛=1 ). 

 

Compared with the CGPF, DGPF-MD decreases the number of particles apparently. Moreover, it lowers 

communication costs and reduces tracking latency in contrast to other DPFs, which will be detailed in the 

next section. 

3. Simulations 

3.1. Simulation environment 

A distributed target tracking scenario in WSNs is simulated to evaluate the proposed DPF algorithm. The 

monitoring system consists of 200 sensors randomly scattered over a field of 800 × 600m2. The sensors are 

assumed synchronized, and have the prior knowledge of their positions and the motion model. The sensors 

can detect the target within the sensing range 𝑅𝑠 = 80m  and communicate with each other within 

communication radius 𝑅𝑐 = 160m. 

We described a nearly constant velocity (CV) model [9] in the target state dynamics and an energy-based 

acoustic measurement model [10, 11], in the following form: 

𝒙𝒌 = 𝐹𝑘𝒙𝒌−𝟏 + Γ𝒘𝒌                                                                                                                                   (6) 

𝒛𝒌 = 𝑔 ∙
𝑠

||𝒓𝒕−𝒓||
α + 𝑣𝑘                                                                                                                                   (7) 

Where 𝒙𝒌 = [ 𝜉𝑘   𝜉𝑘̇  𝜂𝑘 𝜂𝑘̇  ]
𝑇 is the state vector, containing the target’s location coordinates (𝜉𝑘 , 𝜂𝑘) and 

velocities (𝜉𝑘̇ , 𝜂𝑘̇) along x-axis and y-axis. 𝒛𝒌 is the observed acoustic intensity. The matrices 𝐹𝑘 and 𝛤 are 

defined as follows: 

𝐹𝑘 = [

1 𝑇
0 1

0 0
0 0

0 0
0 0

1 𝑇
0 1

]    ,        𝛤 = [

𝑇2/2 0
𝑇 0

0 𝑇2/2
0 𝑇

]                                                                                                (8) 

In addition, T is the sample period. The variance of 𝒘𝒌 and 𝑣𝑘 are 𝑸𝒌 = [
𝜎𝑥
2 0

0 𝜎𝑦
2] and 𝜎𝑛

2, respectively. 

s is the acoustic energy emitted by the target. Since 𝒓𝒕 and 𝒓 respectively denote the coordinates of the target 

and the sensor at time k, ‖𝒓𝒕 − 𝒓‖ is the Euclidean distance between them. 𝑔 is the gain factor of the sensor, 

which can be measured during sensor calibration. 𝛼 is the energy decay factor. In [22], it was shown that the 

effective decay 𝛼, is approximately 2 and this value is assumed for this paper. 

The detailed parameters configurations are as follows. The variances of noises are 𝜎𝑥
2 = 0.22,  𝜎𝑥

2 = 0.32, 

𝜎𝑛
2 = 0.005. Also, s = 1000, 𝑔𝑛 = 1. The simulation includes 50 time steps, and the time interval is T = 2. 

Target starts its track at time k=0 with initial state [0 5 20 4]𝑇. 

To quantitatively evaluate the performance of the proposed algorithm, we define the following root mean 

squared error (RMSE) of the estimated target position and velocity 

931



RMSE𝑘 =

{
 

 √
1

𝑁𝑚𝑐
∑ ((𝜉𝑘

𝑗
− 𝜉𝑘

𝑡𝑟𝑢𝑒)
2
+ (𝜂̂𝑘

𝑗
− 𝜂𝑘

𝑡𝑟𝑢𝑒)
2
)

𝑁𝑚𝑐
𝑗=1         ,   𝑓𝑜𝑟 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

√
1

𝑁𝑚𝑐
∑ ((𝜉̇̂𝑘

𝑗
− 𝜉𝑘̇

𝑡𝑟𝑢𝑒)
2

+ (𝜂̂̇𝑘
𝑗
− 𝜂̇𝑘

𝑡𝑟𝑢𝑒)
2
)

𝑁𝑚𝑐
𝑗=1        ,   𝑓𝑜𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

                                              (9) 

3.2. Experimental Results 

We compare the DGPF-MD with CGPF and the distributed GPF (DGPF) in [7]. It is assumed that the 

number of sensors in the active cluster is N_active𝑘 and the CH selects M (M=4) sensors to perform LGPF at 

k. The number of particles at the fusion center of the CGPF is N=200, whereas the DGPF-MD and DGPF 

schemes respectively employ 𝑁/𝑀 and 𝑁/𝑁_𝑎𝑐𝑡𝑖𝑣𝑒𝑘 particles. It is noted that 𝑁_𝑎𝑐𝑡𝑖𝑣𝑒𝑘 > 𝑀. 

Figure 1 shows a practical trajectory and the tracking results obtained by three different filtering 

algorithms. Figure 2 demonstrates the temporal evolution of RMSE for 𝑘 = 1,… ,50. 

 Fig. 1: Tracking trajectory using three algorithms 
 

Fig. 2: The Position RMSE and Velocity RMSE 

According to both figures, the performance of DGPF-MD is almost as good as that of CGPF and DGPF. 

CGPF has a best tracking performance because of using all the candidate sensor data, but this high accuracy 

comes from a complete set of sensor data and the heavy computation burden in CH. DGPF outperforms 

slightly better than DGPF-MD. In the DGPF, the local information is diffused throughout the whole network, 

and the resulting approximate nearly contains the global information. This diffusion of the local information 

cost much time and energy. The performance degradation of DGPF-MD relative to CGPF and DGPF is 

caused by introducing minimum sensors and the strategy of LGPF based on the local measurement. 

Nevertheless, the performance degradation is acceptable, since DGPF-MD activates much fewer sensors and 

disperses the computation task to several activated sensors. 

The dependence of the accuracy on the number of selected sensors M has also been studied. We compute 

the average RMSE (ARMSE) by averaging RMSE𝑘
2 over all simulated time steps. Table 1 presents the 

comparison of ARMSE of position and velocity, respectively. The results are obtained by averaging 10 

independent experiments over the same network topology. The ARMSE of position decreases as M increases. 

The tracking accuracy of DGPF-MD (M=5) is almost identical to the DGPF. What’s more, if M=6 or M=7 is 

used, the DGPF-MD achieves higher accuracy than DGPF and approaches the CGPF. 

Table I: Comparison of ARMSE of Three Different Algorithms 

Comparison CGPF DGPF 
DGPF-MD 

(M=4) 

DGPF-MD 

(M=5) 

DGPF-MD 

(M=6) 

DGPF-MD 

(M=7) 

ARMSE of 

position 

3.298 4.231 4.634 4.304 3.956 3.716 

ARMSE of 

velocity 

0.801 0.896 0.872 0.885 0.824 0.837 

3.3. Complexity and communication requirements 
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It is assumed that the number of cluster sensors is n at time k. The complexity of the GPF algorithm 

depends linearly on the number of particles. Thereby, the CGPF has a highest complexity. The DGPF cuts 

down the complexity by a factor of n as the number of particles at each sensor reduces from N to N/n. 

Similarly, the complexity of DGPF-MD is reduced by a factor of 𝑀 (𝑀<n) relative to CGPF. 

The communication cost of the CGPF algorithm increases with the number of sensors since the fusion 

center requires all the candidate measurements. In DGPF, we assume the best case that the cluster members 

can communication with each other for 𝑅𝑐 ≥ 2𝑅𝑠 and the global consensus statistics can be established 

through one iteration. The communication cost of DGPF is the highest, since the additional consensus 

algorithm calls for much more information exchange among sensors. The DGPF-MD reduces its 

communication load far below the level of the DGPF. It is because that the small amount but informative 

sensors are employed to perform LGPF without local measurements exchange. Then, the communication 

costs for these algorithms are listed in Table 2. 

Table II: Comparison of Communications of CGPF, DGPF and DGPF-MD 

 Measurements Estimation statistics Total1 

CGPF n / n 

DGPF 
Per sensor 2(n-1) 2(n-1)(4+16) 

42n(n-1) 
Total 2n(n-1) 2n(n-1)(4+16) 

DGPF-MD / 2M(4+16) 22M 

 

Furthermore, tracking latency mainly results from data transmission and processing. In CGPF, 

convergecast communication brings about a long delay, which increases linearly with n, as the center unit 

has to receive messages in a sequential order. In the DGPF, an additional delay is caused by the consensus 

algorithms. Compared with the CGPF and DGPF, the latency of the DGPF-MD is reduced since transmission 

time is determined by M (M<n). As n increases, the advantage of DGPF-MD will become more apparent. 

Thus, the DGPF-MD may be more suitable for real-time applications 

4. Conclusion 

This paper proposes a MD-based, distributed Gaussian particle filter (DGPF-MD) for target tracking in 

WSNs, which employs a sensor selection scheme to cluster several informative sensors, while uses a 

weighted average fusion algorithm to estimate global mean and covariance of posterior probability. Also, UT 

is applied to propagate the mean and covariance to generate the predicted statistics. At each selected sensor, 

a LGPF is performed in parallel, and only local communications between the selected sensors and CH are 

demanded. The global statistics is estimated by weighted average fusion based on utility of the data provided 

by the member sensors, which is characterized as MD between the sensor and predicted target position. 

Finally, the simulations evaluate the performance of the proposed DGPF-MD, CGPF and DGPF, which 

shows the DGPF-MD has more acceptable complexity, lower communications cost and shorter tracking 

latency. So we can see the DGPF-MD is more suitable for real-time applications. 
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