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Abstract. The traditional EEG signal feature extraction method based on frequency characteristics only 

extracts the energy feature of each channel, ignoring the correlation information of EEG signals between 

different channels. To gain a better effect of feature extraction, this article puts forward a feature extraction 

method based on wavelet packet and common spatial patterns (CSP), namely taking advantage of wavelet 

packet’s multi-resolution characteristics to run the orthogonal decomposition within the all frequency field to 

extract the motor imagery   rhythm and   rhythm, from the motor imagery EEG signals of the left hand 

and the right foot, and further extract the features by doing the spatial filtering through CSP. In combination 

with the advantages of wavelet packet and CSP, this method could play the relevant information among 

different channels to the full and classify the two kinds of motor imagery EEG signals by making use of 

support vector machine (SVM). Better EEG classification results achieved via this experiment are that the 

maximum classification accuracy of   rhythm is 92.8571% and the maximum classification accuracy of   

rhythm is 93.5714%. To achieve the practical application of BCI standards. 

Keywords: brain computer interface (BCI), motor imagery (MI), Wavelet packet, common spatial patterns 

(CSP) 

1. Introduction 

BCI is a system that allows the human brain to communicate directly with the external interface[1]. The 

traditional exchange and control between the human brain and the external environment relies on peripheral 

nerves and muscle tissue, and BCI provides a direct communication path between the human brain and the 

external device. Real-time control of the equipment is realized by real-time measuring the brain activity 

related to the user's intention and converting the activity into the corresponding control signal[2](Fig. 1 for 

the basic BCI system block diagram). BCI ultimate goal is to form a more natural smooth man-machine 

communication. This can increase the personnel's special control skills for special equipment, such as divers, 

astronauts, etc., in certain special environments, as well as reducing personnel workload and improving work 

efficiency and control accuracy. 

The most important part of realizing BCI system based on left-right hand motor imagery is the feature 

extraction of EEG signal. At present, the main methods of feature extraction are auto regressive (AR) model 

[3], power spectrum estimation [4], wavelet transform [5] and so on. AR model and power spectrum 

estimation belong to the frequency domain analysis method, which can not well characterize the time domain 

information of EEG signal. Wavelet transform is a time-frequency analysis method, although it can analyze 

the signal in time domain and frequency domain, but it can not have high resolution in both time domain and 

frequency domain. These methods are to extract the energy feature of each channel itself, ignoring the 

correlation information of different channels diencephalic electrical signal, EEG feature can not meet the 

needs of high recognition rate. Therefore, it is very meaningful to explore more effective feature extraction 

methods. 
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In this paper, we propose a method to extract feature EEG signals from left and right footers by means of 

wavelet packet decomposition and common spatial patterns. When people conduct motor imagery, there will 

be 8-12Hz   rhythm and 18-26Hz   rhythm EEG generated in the brain sensory motor cortex area. When 

people conduct the unilateral limb motor imagery, the contralateral   rhythm and   rhythm of the brain 

will appear amplitude attenuation (ERD); and the ipsilateral   rhythm and   rhythm of the brain will 

appear amplitude enhancement(ERS) [6]. According to the ERD / ERS phenomenon,   rhythm and   

rhythm are extracted from the motion imaginary EEG signal by wavelet packet transform to improve the 

EEG signal-to-noise ratio. And then use the CSP algorithm to extract the characteristics of spatial filtering, 

fully reflects the correlation between the different channels of information. Finally, the support vector 

machine (SVM) is used to classify. This study is expected to lay a solid foundation for the further research of 

online real-time BCI system based on motion imagery. 
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Fig. 1: Basic BCI system block diagram 

2. Fundamentals of Algorithms  

2.1. The Principle of Wavelet Packet Transform 

Since the EEG signal is very weak (μV level), and internal mixed with a variety of noise (such as EOG, 

EMG, ECG, Power Frequency Noise, etc.)[7]. So the signal to noise ratio of EEG is very low. Using wavelet 

packet transform for EEG signal in frequency domain filtering, can effectively improve the SNR of EEG. 

Wavelet packet is developed on the basis of wavelet transform, wavelet packet is more precise than 

wavelet transform in signal analysis. It can not only carry out the orthogonal decomposition of the signal in 

the whole frequency band, but also can adaptively select the corresponding frequency band according to the 

signal characteristics, so that it can be matched with the signal spectrum, and has higher time-frequency 

resolution [8]. By using the multi-resolution characteristics of wavelet packet transform, we can select the 

best component combination relation in the original signal of EEG, and then extract the signal range of 

useful information. 

In the wavelet multiresolution signal analysis, the Hilbert space  2L R  can be decomposed into the 

orthogonal sum of all wavelet subspace  jW j Z  according to the different scale factor j . 

 2

j
j Z

L R W


                                                                                              (1) 

Wavelet packet on the  1,2,3jW j   in accordance with the binary frequency subdivision, and 
n

jU  is 

the n th wavelet subband of the j  scale, as shown in Fig.2. 

2.2. Common Spatial Pattern 

The CSP algorithm is applied to the two classification problem, and the optimal spatial filter is 

constructed by the diagonalization of the covariance matrix of the two kinds of data. After the spatial 

filtering of the two kinds of data, the difference of the spatial components of the data reaches the maximum, 

that is to say, the variance of one kind is maximized, and the other one is the minimum variance of [9].  
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Fig. 2: Wavelet packet decomposition of the 3 layer. 
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Single experiment EEG data can be expressed as N T  matrix E , N  is the number of data acquisition 

channels, T  is the number of samples per channel. The normalized spatial covariance of EEG data is shown 

in equation (2). 

(EE )

T

T

EE
C

tr
                                                                            (2) 

 tr X  represents the sum of the diagonal elements of the matrix X . The normalized spatial covariance 

matrices of two kinds of data are denoted by Cl  and Cr  respectively. In order to obtain better spatial 

filtering effect, the two kinds of experimental data are averaged, and the respective mean normalized spatial 

covariance matrices Cl  and Cr . 

   
1 1

1 1
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                                                        (3) 

 Cl i 、  Cr i  are the normalized covariance matrices of the left and right  1,2, , li i K -th 

experimental data, respectively. 

The mixed spatial covariance matrix of the two kinds of data is defined as: Cc Cl Cr  . The Cc  is 

decomposed into c c cCc U U , cU  is the eigenvector of the matrix, c  is the diagonal matrix of the 

corresponding eigenvalues. The eigenvalues are arranged in descending order, and the whitening 

transformation is carried out according to the formula (4). 

1 T

c cP U                                                                    (4) 

After whitening, the characteristic value of TPCcP  is equal to 1. For Cl  and Cr  to do the following 

transformation: TSl PClP  and TSr PCrP . Then Sl  and Sr  have a common eigenvector. When 
T

lSl B B , 

then 
T

rSr B B  and l r I   , where i is the unit matrix. 

It can be found that the eigenvector corresponding to the largest eigenvalue of Sl  is the eigenvector 

corresponding to the minimum eigenvalue of Sr . On the contrary, the eigenvector corresponding to the 

largest eigenvalue of Sr  is the eigenvector corresponding to the minimum eigenvalue of Sl . The projection 

matrix is obtained by using the eigenvector matrix B . 

 
T

TW B P                                                                          (5) 

The experimental data E  is decomposed according to the projection matrix W , i.e. 

 Z WE                                                                              (6) 

Each row vector in Z  is a feature vector corresponding to l  or r . Because the eigenvector matrix B  

is a feature vector corresponding to the descending eigenvalues. The first column in B  corresponds to the 

largest eigenvalue in r , and the last column in B  corresponds to the smallest eigenvalue in r . After the 

transformation of formula (5) and (6), the first line of Z  corresponds to the largest eigenvalue in r , and the 

last line of Z  corresponds to the smallest eigenvalue of r . Finally, the variance of each line of Z  is used to 

distinguish the two kinds of data. 

3. Experiment and Result Analysis 

3.1. Experimental Data 

The experimental data were obtained from the Data sets IV trial B calibration data provided by the third 

brain machine interface competition in 2005. The experiment uses 118 electrodes, the sampling frequency is 

100Hz, the motor imagery cycle is 3.5s. The subjects relax and sit comfortably in front of the computer. 

According to the prompts appear on the screen to exercise imagination, imagine the contents of the left hand 

movement imagination and right foot movement imagination. A single experiment is divided into the 

following two links: 

 0~3.5s subjects performed motor imagery (left / right) according to the arrow direction (left / right) 
on the computer screen; 

 After 3.5s, the arrow on the screen disappears, the subjects are relaxed and the relaxation time is 
1.75~2.25s. 
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The data set contains 105 times of left hand motion imagination and 105 times of right foot movement 

imagination, a total of 210 sets of experimental data. The first 35 sets of data from left hand and the first 35 

sets of data from the right foot form the training set, and the remaining 140 sets of data form the test set.  

3.2. Using Wavelet Packet to Extract EEG Rhythm 

In the left hand and right foot motor imagery EEG signal analysis, according to the ERD/ERS 

phenomenon to choose a wavelet packet decomposition, the decomposition of each component in the same 

level, and has the same sampling rate and the length of the data, which can extract the  rhythm and the 


 

rhythm of EEG is convenient. Because the sampling frequency of the EEG signal is 100Hz, according to the 

Nyquist sampling theorem, the bandwidth of the EEG signal is 50Hz. The wavelet packet is decomposed into 

three layers by using the db4 wavelet base to decompose the EEG signal, and the minimum resolution is 

shown in (7). 

50 8 6.25f Hz Hz                                                                         (7) 

Therefore, the wavelet packet decomposition coefficient is reconstructed, and the frequency range 

corresponding to each subband signal of the obtained wavelet packet is shown in Table 1. 

Table 1: Frequency Range Corresponding to Each Subband (unit: Hz) 

Subband Frequency Range Subband Frequency Range 

（3,0） 0~6.25 （3,1） 6.25~12.5 

（3,2） 12.5~18.75 （3,3） 18.75~25 

（3,4） 25~31.25 （3,5） 31.25~37.5 

（3,6） 37.5~43.75 （3,7） 43.75~50 

 

As can be seen from Table 1,   rhythm EEG is included in the wavelet Subband (3,1),   rhythm EEG 

is included in the wavelet Subband (3, 3). The wavelet packet Subband (3,1) and (3,3) were reconstructed to 

extract the   rhythm and   rhythm of  EEG. It can remove the interference of the noise and preserve the 

information of the motor imagery, which provides a powerful guarantee for the feature extraction and 

classification. Fig.3 is the original EEG signal for single channel motor imagery and the reconstructed signal 

of the wavelet packet. 

3.3. Common Space Pattern Extraction Feature 

Using the wavelet packet decomposition method described above,   rhythm and   rhythm were 

extracted from 105 groups of left hand motion imagination and 105 group right foot motion imagination 

EEG data respectively. And then through the CSP algorithm to build a spatial filter, so that motion 

imagination EEG data after spatial filtering of its spatial components in the energy difference to the 

maximum. Respectively, to extract the left hand and right foot movement imagination   rhythm EEG 

characteristics and   rhythm EEG characteristics. The main steps to extract a feature are as follows: 

1) Using the equations (2) and (3), we obtain the average normalized spatial covariance matrices of the 

first 35 groups of left and right foot motion imagination EEG data respectively; 

2) The mixed spatial covariance matrix of two kinds of motion imaginary data is obtained; 

3) The projection matrix W is obtained by using equations (4) to (5); 

4) The 210 groups of motor imagery EEG data were decomposed by formula (6), and the feature vector 

matrix Z  of each group data was obtained; 

5) The variance of each line of the eigenvector matrix Z of each data set is taken as the EEG feature, 

and each group of motor imagery data contains 118 feature points; 

6) Due to the large difference between partial eigenvalues, the eigenvalues are logarithmically 

transformed to obtain the final characteristics, Fig.4 and Fig.5 is left and right foot motor imagery 

  rhythm and   rhythm EEG characteristics. 
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Fig. 3: Single channel motion imagines the original EEG signal, and the wavelet packet subband (3,1),(3,3) 

reconstructed signal. 
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Fig. 4: Left hand and right foot motor imagine                              Fig. 5: Left hand and right foot motor imagine    

rhythm feature distribution.                                                                       rhythm feature distribution. 
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Fig. 6: Curves of   rhythm classification accuracy                    Fig. 7: Curves of   rhythm classification accuracy  

with m value.                                                                            with m value. 

3.4. Support Vector Machine Classification 

SVM was used to classify the two kinds of motor imagery EEG. Because each set of data contains 118 

feature points, in order to get the best classification results, we need to select the feature points. As can be 

seen from Figure 4, the distribution of the eigenvalues of the left hand and right foot is larger at both ends. 

Therefore, we select the first m feature points and the rear m feature points of each set of data to form a 

feature vector with a length of 2m as the input of the classifier. The range of m is 1 to 59. The left hand and 

right foot of the 105 sets of data, respectively, the first 35 groups used for training, the remaining for testing. 

The formula for calculating the classification accuracy is shown in equation (8). 

correct number correct number

accuracy rate

total number

+
100%

L R
A

S
                                                       (8) 
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where L  represents the correct number of left hand motor imagery recognition. R  represents the correct 

number of left hand motor imagery recognition. S  represents the total number of motor imagery to be 

identified. The   and   rhythm EEG classification accuracy with the m value of the curve as shown in 

Fig.6 and Fig.7. 

As can be seen from Fig.6 and Fig.7: when m=7, the classification accuracy of the   rhythm EEG 

reaches a maximum value of 92.8571%. When m=6, the classification accuracy of the   rhythm EEG 

reaches a maximum value of 93.5714%. With the increase of m, the classification accuracy rate decreased 

gradually, and the change range was 65%~95%. The experiment achieved a good classification effect. 

4. Conclusion 

In this paper, the original EEG signal is decomposed by the wavelet packet, and the   rhythm and   

rhythm are extracted. CSP was used to carry out spatial filtering to extract the feature of EEG. SVM was 

used to classify two kinds of motor imagery EEG with different rhythms. The experimental results show that 

wavelet packet decomposition and CSP algorithm are combined to extract EEG features. A good 

combination of the frequency characteristics of the EEG signal and the correlation information between 

different channels. There were significant differences in EEG features extracted from left hand and right foot. 

The accuracy rate of   rhythm EEG classification was 92.8571% and the accuracy rate of   rhythm EEG 

classification was 93.5714%. It is proved that the combination of wavelet packet and CSP algorithm can 

effectively extract the characteristic pattern of motor imagery EEG. It lays the foundation for the further 

research of online real-time BCI system based on motion imagination. 
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