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Abstract. The common spatial pattern (CSP) can effectively extract the spatial information of motor 

imagery (MI) signals, but ignores time and frequency domain information of EEG signals. In order to 

overcome this problem, a new method is proposed in this paper, which combines the CSP method with the 

time-frequency analysis method Local Characteristic-scale Decomposition (LCD) to extract the time-

frequency information and improve the classification accuracy. The effectiveness of the algorithm was 

verified by conducting experiments with the BCI competition dataset. The results show that the proposed 

method improves the recognition rate of MI signals, and has potential for the application of portable BCI 

systems in rehabilitation field. 
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1. Introduction 

A motor imagery brain computer interface (BCI) [1] is significant for stroke patients, which can help the 

recovery of damaged nerve and play an important role in the rehabilitation training assistant [2]. The 

application spectrum of BCI also extends to navigation, healthcare, military services, robotics, virtual 

gaming, communication and controls, etc. The classification accuracy of motor imagery depends largely on 

features extracted from EEG signal. In general, the two-class motor imagery classification accuracy rate has 

reached more than 90% [3], while multi-class motor imagery movement classification accuracy rate is low,  

which needs further research to be applied MI BCI in the field of rehabilitation exercise. 

At present, the most common way to extract the features of motor imagery EEG is common space 

pattern (CSP) [4]. However, CSP has deficiencies. First of all, it needs multi-channel information to improve 

the classification results; secondly, it ignores the information of EEG signal in time and frequency domain. 

While time and frequency domain information for motor imagery classification is particularly important, 

effective feature extraction method in frequency domain is needed. 

Because the EEG signal is nonlinear and non-stationary, the classical time domain or frequency domain 

analysis methods are difficult to analyse it effectively, while time-frequency analysis can make it. The time-

frequency analysis methods include wavelet decomposition [5], empirical mode decomposition (EMD) [6], 

local mean decomposition (LMD) [7], the intrinsic time scale decomposition method (ITD) [8], et al. 

At present, many researchers combine common space pattern with time-frequency analysis method such 

as wavelet decomposition [9], EMD decomposition [10], LMD, and ITD. However, there are many problems 

in parameter setting problem, end effects, unexplained negative frequency problem, time consuming problem, 

etc. 
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Local characteristic-scale decomposition (LCD) [11] is proposed based on the study of intrinsic time-

scale decomposition (ITD). By using this method, a complicated multi-component signal could be adaptively 

decomposed into the summation of a number of physically meaningful intrinsic scale components (ISCs). 

This method is superior to EMD algorithm in end effects, iteration number and decomposition time, and it is 

expected to achieve real-time online analysis of EEG signal. 

In this study, LCD time-frequency decomposition is used to process part of the motor imagery EEG 

channels to get ISC components and extract the time-frequency features. Then, to get the spatial features, the 

ISC components and EEG channels are processed by CSP. After fusing the time-frequency and spatial 

features, features are ranked and then a classifier is used to classify the motor imagery tasks. Experiments 

were carried out with the 2008 BCI competition data to compare our algorithm with other algorithms. The 

results show the effectiveness of our algorithm. 

2. Materials and Methods 

2.1. Experiment Data 

In this paper, using the 2008 BCI competition Data Sets 2a [15], provided by Graz University, we 

benchmarked the performance of our algorithm to see how good the algorithm is. The EEG data was 

collected from 22 channels over the sensorimotor area. 

The dataset includes four imagination of movements: left hand, right hand, both feet and tongue. 9 

subjects recorded EEG data sets at different two days. During the experiment, the subjects sat in front of a 

computer, according to computer prompts to react. An experiment lasted 8 seconds. The experimental timing 

scheme of the paradigm is shown in Fig. 1. 

 
Fig. 1: Timing scheme of the paradigm. 

Each subject's data set consisted of two parts, the data set T and E, including the 576 experiments totally. 

Further details of the dataset can be found in [15]. 

2.2. Time-Frequency Analysis and Feature Extraction 

Based on the definition of the ISC component, a real value signal ( )( 0)x t t 
 
can be decomposed into 

numbers of ISCs by using the LCD method following the way in [11]. The ISC component’s conditions are 

to eliminate the situation of riding wave, guarantee the waveform single and ensure the smoothness and 

symmetry of the ISC component waveform. They assure that the ISC component possesses a single mode 

between two adjacent extrema and corresponds with the sine curve locally. Hence the IF of the ISC has 

physical significance. 

So a signal ( )x t  is decomposed into n ISCs and a residue ( )nu t  as 
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To guarantee that the ISC components meet the definitions, a criterion for the sifting process should be 

determined. In this paper, the standard deviation (SD) is adopted. 
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Note that there is still much time consuming, the maximum contribution 3 channels C3, C4 and Cz, are 

selected to be processed with LCD. And each channel data get 3 ISC compositions. 

The obtained 9 ISC components are integrated with the original 22 channels of EEG signals to the data 

of 31 channels. Then, the Hjorth parameters of the data is extracted. 

Hjorth[19] introduced a set of three parameters to describe the EEG signal: Activity, the signal power; 

Mobility, the mean frequency; and Complexity, the change in frequency. 

Thus, after processing the EEG signals with LCD, the time-frequency features in a trial are extracted as 

  1

1 11 12 1, , K

KF f f f R    , where K  is 93 in this paper. 

2.3. Spatial Feature Extraction 

In this paper, Common Spatial Pattern (CSP) [14] is used for feature extraction. We denote the EEG data 

of trial i  for class A  by AiX , which is a matrix of size N  by M . Here N  represents the number of 

channels and M  represents the Number of sample points in time domain of a trial. In the theory, there are 

two classes A and B, and a projection matrix W  is gained after CSP. 

Using the projection matrix W, the data from each trial X  can be projected as  

    Z WX                                                                             (3) 

After CSP projection, total 2m  rows are selected to represent each trial. Let pz  be defined as the 

variance of row p  of Z . Then usually the 
thp  component of the feature vector for the trial is computed as 

the logarithm of the normalize variance as in (4): 
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The feature vector  1 2, , mf f f   is then used for designing classifier for motor imagery tasks. In this 

paper, we set the parameter N as 31, which is the number of all channels and 9 ISC components. 

Because this paper designs the four-class MI tasks classification, CSP needs to be expanded to meet the 

requirements. There are two kinds of commonly used expansion methods: one-to-one and one-to-other. In 

this paper, the one-to-other way was chosen to expand the CSP. Therefore, four projection matrices 
1 2 3 4, , ,f f f f will be generated for each trial. Each projection matrix is concatenated to form a whole 

spatial feature vector 2F . 

   
1 2 3 4 1 (4 2 )

2 , , , mF f f f f R                                                                     (5) 

2.4. Feature Fusion 

There are two kinds of feature fusion method: serial feature fusion and parallel feature fusion. Among 

them, the serial feature fusion is to connect a variety of features after they were normalized, which is simple. 

This paper uses serial feature fusion strategy to obtain EEG features. 

Assuming the EEG feature vector after processing and serial feature fusion is 
 1 8K m

F R
 

 , then 
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In the formula, 1F is the time-frequency domain feature vector of the 9 ISC components extracted based 

on LCD and the original 22 channels of EEG signals. 2F  is the spatial feature vector extracted by CSP 

method from N  signals. In this paper, N  is 31. 

2.5. Feature Ranking and Classification 

MCFS [17] is to compute the score for each feature and select d features according to the scores. In this 

paper, we just use the MCFS to score and rank the features for the following classification stage. 

LDA is frequently used as classifier for analysing EEG signal. However, the computation time and 

memory cost of LDA are very expensive. This paper adopts the spectral regression discriminant analysis 

(SRDA) classifier [18]. Specifically, SRDA only needs to solve a set of regularized least squares problems, 

and there is no eigenvector computation involved, which is a huge save of both time and memory. 

3. Results and Discussion 

3.1. Our Experiment Procedure 

In order to enhance the signal-to-noise ratio (SNR), the data was band-pass filtered between 8 Hz and 30 

Hz. According to the literature [16], the 2.5s-3.5s data was selected for the classification processing. 

Then the C3, C4 and Cz channels were selected to be processed with the LCD. Each channel can be 

decomposed into 3 ISC components. After integrating the original 22 channels and the 9 ISC components, 

the following step is to extract time-frequency features 1F  and spatial features 2F  from the integrated data 

with CSP. 

Finally, the two feature vectors 1F  and 2F  are fused as F . F  is ranked by the MCFS method and then 

put into the SRDA classifier to train and classify. 

3.2. Classification Performance 

There were 9 subjects taking part in the experiment, and each subject had two data sets. Session T is the 

training set, while the session E is the evaluation set. Each of them has 288 trials. 

To illustrate the effectiveness of the proposed method, the performance of our method is also compared 

with other competitor algorithms: discrete wavelet transform (DWT) features [12], combining power spectral 

density, AR parameters and Hjorth parameters [13], the CSP of 22 channels, and the CSP of 31channels as 

shown in Table 1. In this table, the parameter 2m  is set as 8. 

Using SRDA classifier, and keeping the network parameters unchanged, this paper compared the 

classification performance of the five algorithms as shown in Table 1. In this table, each data show the 

classification accuracy of the four-class MI tasks of the subjects, including left hand, right hand, both feet 

and tongue.  

Table 1: Comparison of Classification Accuracy (%) of Competitor Algorithms of 9 Subjects where 2 =8m  

subjects 1 2 3 4 5 6 7 8 9 Mean 

DWT 53.8 31.6 58.3 38.9 31.6 42.0 40.3 57.3 57.6 45.71 

PSD + AR + Hjorth 54.2 35.4 48.6 41.7 30.6 39.9 48.6 49.3 62.5 45.64 

CSP of 22 channels 60.8 34.7 77.1 53.1 35.1 37.5 62.8 73.3 77.1 56.83 

CSP of 31 channels 63.9 39.9 75.0 57.6 34.4 42.0 62.5 73.6 76.0 58.33 

Our method 62.2 40.3 75.3 57.3 34.4 41.3 64.6 75.0 79.5 58.87 
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As we can see, only for subject 6, our method has no ideal result, comparing with the DWT and PSD + 

AR + Hjorth features. For most subjects, our methods obtained the best results under the same experimental 

conditions.  

Comparing with the CSP of 22 channels, the CSP of 31 channels has improved the classification 

accuracy averagely. It shows the importance of 9 ISC components decomposed by LCD in classification. 

Further, since the performance of our method is better than the other two CSP methods which have no time-

frequency features, it’s obvious that the time-frequency features extracted are significant for the 

classification. 

For subjects 1, 2, 7, 8 and 9, our method has the best effect among the five algorithms. And our method 

has improved the average accuracy to a certain degree, compared with the CSP of 22channels. The validity 

of the proposed algorithm can be verified through this. 

To further illustrate the effectiveness of our method, the average classification accuracy of our method is 

also compared with other two CSP algorithms when the value of 2m  is changing, as shown in Table 2. Each 

data in this table presents the average classification accuracy of 9 subjects under different value of 2m . As 

we can see, for most values of 2m , our methods obtained the best results under the same experimental 

conditions, comparing with other two algorithms. And our method averagely improved the performance of 

the CSP method, which shows the effectiveness of our proposed method. 

Table 2: Average Classification Accuracy (%) of 9 Subjects under Different Values of  2m  

values of 2m  2 4 6 8 10 12 14 16 18 20 22 Mean 

CSP of 22 

channels 

55.5 58.7 57.5 56.8 56.7 57.6 57.5 57.1 57.1 56.8 56.9 57.1 

CSP of 31 

channels 

55.9 58.6 57.7 58.3 58.5 59.0 59.0 58.4 57.9 58.0 57.6 58.1 

Our method 56.9 59.2 58.4 58.9 59.2 58.7 58.5 58.1 58.6 58.4 58.5 58.5 

 

Thus it can be seen, the method proposed in this study can effectively extract the time-frequency and 

spatial information in motor imagery EEG signal to improve the classification accuracy of four-class motor 

imagery tasks. The results discussed above suggest that the proposed method is effective. 

4. Conclusions 

This paper presents a feature extraction method for four-class motor imagery tasks based on LCD and 

CSP. This method used LCD and CSP to analyse EEG signals and obtain corresponding time-frequency and 

spatial features. The fourth BCI competition Data Sets 2a data was used to verify the proposed method. The 

results show that our method further improves the recognition accuracy of CSP and has important 

significance in the practical application of motor imagery in the field of rehabilitation. 
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