
An Automated Detection Framework for Testing Visual GUI Layouts 

of Android Applications  

Yen-An Shih, Yi-Ping Chang, and Cheng-Zen Yang

 

Dept. of Comp. Sci. and Eng., Yuan Ze University, Taiwan, R.O.C. 

Abstract. As Android is one of the most popular mobile operating systems, software quality maintenance 

of Android applications becomes an important issue. Although many studies have been conducted for 

detecting software bugs of Android apps, the chaotic layout problem appearing in different screen resolutions 

has not been discussed. In this paper, we propose a novel detection framework that employs two detection 

schemes for testing visual GUI layouts. The empirical experiments were conducted with three Android apps. 

The preliminary results show that the proposed detection framework can effectively discover all chaotic 

situations of the test apps.  

Keywords: Android, Chaotic Layouts, GUI testing, Empirical Study. 

1. Introduction 

Android is one of the most popular mobile operating systems. As shown in the statistics of AppBrain, 

more than 2.7 million Android apps have been available in the market in February 2017 [1]. Maintaining the 

quality of Android applications becomes an important subsequent issue because AppBrain also indicates that 

13% of these available Android applications are low quality apps [1]. With the increasing demand of 

software quality maintenance, various testing tools have been proposed for Android applications, e.g., [2,3,4]. 

However, most of these past testing tools mainly focus on the issue of discovering crash bugs or logical 

errors. The chaotic layout problem appearing in different screen resolutions has not been discussed. 

The chaotic layout problem is resulted from the serious device diversity because Android can run on a 

large variety of devices that offer different screen sizes and densities. According to Android Developers API 

guides [5], Android developers should take notice of optimizing the UI design for different screen 

configurations. One example is to have different layouts for different screen densities, not to mention the 

portrait and landscape orientations. However, such chaotic layout problem can be still found in many apps 

on Google Play. For example, Fig. 1 shows two screenshots of an Android app, Girl’s Note
1
, in different 

resolutions. In Fig. 1(a), the app is correctly displayed in 768×1280 and 320 DPI (dots per inch). When the 

DPI is decreased to 240 in Fig. 1(b), the note component in the bottom area disappears. 

The process of manually detecting the chaotic layout problem can be very cumbersome because its time 

complexity is O(m×n) for m layouts and n screen configurations. Assume that inspecting each layout needs 5 

minutes. If an app has 10 layouts and it will run with 50 screen configurations, it may take 42 hours to 

inspect all GUI layouts.  

In this paper, we present a novel detection framework for automatically testing visual GUI layouts of 

Android apps. The proposed detection framework deals with two chaotic layout situations: (1) layout 

components are missing in different screen configurations, and (2) cropped text appears in different screen 

configurations. We have implemented the proposed framework based on the app exploration techniques used 

                                                           
  Corresponding author. Tel.: +88634638800; fax: +88634638850. 

   E-mail address: czyang@syslab.cse.yzu.edu.tw. 

https://play.google.com/store/apps/details?id=com.apm.android.girlscalendarcht_hd 

 

    

 

     

544

ISBN 978-981-11-3671-9

Proceedings of 2017 the 7th International Workshop on Computer Science and Engineering 

(WCSE 2017)

Beijing, 25-27 June, 2017, pp. 54  4 -54  8

admin
打字机文本
doi: 10.18178/wcse.2017.06.093



in PATS [4] that can automatically discover the GUI layouts of the app under test (AUT). The empirical 

experiments show that the proposed schemes can effectively find the chaotic layout situations in the AUTs.  

The rest of this paper is organized as follows. Section 2 briefly reviews the past research on the visual 

effects of GUI layouts. In Section 3, the proposed detection schemes and the framework architecture are 

described. Section 4 presents the experimental details and the results. Finally, Section 5 concludes the paper.  

2. Related Work 

As the number of Android devices is rapidly growing, the chaotic layout problem of Android has not 

been comprehensively discussed. To the best of our knowledge, there is no systematic study discussing the 

chaotic layout problem for Android. In the past, most of the studies focus on the aesthetic arrangement issues 

of the layout design in a window-based environment. They do not consider the chaotic layout problem which 

is incurred because of the diversity of screen densities. For example, Ch’ng and Ngo propose a dynamic 

symmetry grid based approach for screen layout design [6]. The layout scheme utilizes the dynamic 

symmetry based on the rediscovery of Hambidge [7] and can reformats screen layouts automatically. 

However, this scheme does not consider the heterogeneity of various screen densities. 

For the aesthetic arrangement issue, the computational model proposed by Bauerly and Liu calculates the 

aesthetic quantity of GUI elements in the screen layouts by considering three indicators: balance, symmetry, 

and number of groups [8]. They use these indicators to investigate the relationship between the arrangement 

of GUI elements and the aesthetic judgments. However, they do not study the chaotic layout problem for 

various screen configurations. 

3. Detection Framework 

This section describe the proposed detection framework that deals with two chaotic situations. The 

definitions of these two situations and the corresponding detection schemes are first elaborated. The 

detection framework architecture is thereafter presented. 

3.1. Problem definitions and detection schemes 

Two chaotic situations for GUI layouts in different resolutions are studied in the proposed schemes: 

 Layout components are missing in another screen density. 

 Textual strings are cropped in another screen density. 

Fig. 2 shows these two chaotic situations. Fig. 2(a) illustrates the first situation in which the bottom 

component of an app MunchLife
2
 is correctly displayed in resolution 768×1280 and 320 DPI, but it is 

missing when the resolution is changed to 480×800 and 240 DPI. Even the worse, users cannot operate on 

this component. In Fig. 2(b), a simple app Textview is designed to show that the text is cropped if the layout 

                                                           
2 https://play.google.com/store/apps/details?id=info.bpace.munchlife&hl=zh_TW 

 

 

   

 

545

  
(a) 768×1280, 320 DPI. Correctly displayed. (b) 480×800, 240 DPI. The bottom note disappears.

Fig. 1: Screenshots of Girl’s Note in different resolutions.



design is not adaptive to the change of the screen resolution. Therefore, it could be difficult for users to 

perceive the meaning of the text.  

For these two kinds of situations, we propose two detection schemes, respectively. Before the detection 

process, a resolution that can correctly display the GUI layout is defined as the baseline resolution Rb. With 

the layout Lb in resolution Rb, the layout under test Lu in another resolution Ru is then compared to decide 

whether Lu has the chaotic layout problem.  

For the first chaotic situation, the number of the GUI components in Lb is extracted as Nb. The number of 

the GUI components in Lu is also extracted as Nu. If Nb  Nu, this chaotic situation in Lu is detected. To 

achieve the extraction operation, we design a UI-Explorer framework to parse the Android XML structure of 

each GUI layout. Fig. 3 shows a snippet of the XML structure of MunchLife and the analytic results. 

For the section chaotic situation, UI-Explorer first extracts the coordinate data of all text-based 

components in both Lb and Lu and then invokes a screen snapshot tool to get the individual snapshot of each 

corresponding text-based component in Lb and Lu. Finally, UI-Explorer invokes an OCR (Optical Character 

Recognition) tool to identify the text string of each component in different resolutions and decides their 

similarity to the original text string by calculating the edit distances. For a text-based component, if its edit 

distance in Lu is obviously different with its edit distance in Lb, the text-cropping situation may most likely 

occur in Lu. 

 
   

 

 
 

  

  

 
768×1280, 320 DPI 

 
480×800, 240 DPI 

 
768×1280, 320 DPI  

480×800, 240 DPI 

 

(a) Component missing. 

 

(b) Cropped text. 

Fig. 2: The studied chaotic layout problem. 

546

(a) A snippet of the XML structure of a layout.

(b) The detection result of the chaotic situation. 

Fig. 3: The component missing problem in MunchLife.



Take a text-based component ci as an example. Its original text string to,i can be extracted from the XML-

based text attribute of ci. In Lb, its OCR-identified string is tb,i, and the corresponding edit distance between 

to,i and tb,i is edb,i. Similarly, the OCR-identified string in Lu is tu,i, and the edit distance between to,i and tu,i is 

edu,i. Given a threshold T for considering the possible marginal OCR errors, text cropping may most likely 

occur if | edb,i - edu,i |  T. Fig. 4 shows the detection result for the app Textview.  

3.2. Detection Framework Design 

The proposed detection schemes are integrated in the UI-Explorer framework illustrated in Fig. 5. As 

shown in Fig. 5 (a), the developer inputs the AUT and screen configurations of Lb and Lu to UI-Explorer. UI-

Explorer has a GUI ripping engine to automatically extract the XML information of the GUI components on 

all layouts. UI-Explorer then analyses the layout structure information and the OCR results for the final 

chaos detection process. Fig. 5 (b) is the screenshot for detecting a Postfix Calculator app. 

4. Experiments and Discussion 

To study the effectiveness of the proposed detection schemes, we have implemented the UI-Explorer 

based on the exploration techniques used in PATS [4]. In addition, OpenCV [9] and Tesseract [9] were used 

as the snapshot engine and the OCR engine. We collected three apps for the empirical experiments:  

 Textview: This app is custom-designed to have the text cropping problem. 

 Postfix Calculator: This app is a student programming work. It is used to compute the postfix 

expression. It has both the component missing problem and the text cropping problem. 

 MunchLife 1.4.4: This app is on Google Play for keeping track the character level for the card game 

Munchkin. It contains the component missing problem. 

The empirical experiments were conducted for two resolutions. The resolution of 768×1280 and 320 DPI 

was used as the baseline resolution Rb. The resolution of 480×800 and 240 DPI was used as Ru. As shown in 

Table 1, the UI-Explorer framework effectively discovered the chaotic situations of these test apps as the 

manual detection. Although the experimental results are preliminary, they are promising for the future 

development of the detection schemes. 

Considering the threats of the internal validity, the proposed schemes assume that the developers want to 

have the same layout in different resolutions. However, if the developers have different layout designs with 

regard to various resolutions, the proposed schemes will generate false alarms. However, the occurrences of 

 
 

Text OCR 

Processing

Apps &

Screen 

Config.

GUI 

Ripping 

Engine

Layout 

Structure 

Parsing

Layout

Data 

ReportChaos 

Detection

UI-Explorer Framework
 

 

(a) The Framework (b) Working screenshot 

Fig. 5: The UI-Explorer framework for detecting chaotic situations. 

547

Fig. 4: The text cropping problem in Textview.



the false alarms should be uninfluential because the notification can be switched off. For the threats of 

external validity, the proposed schemes focus on XML-based layout design. If the AUT uses other graphical 

engines, such as OpenGL, for layout rendering, the proposed schemes cannot properly detect chaotic layouts. 

For this problem, other detection schemes for graphical engines will be investigated in our future work. 

5. Conclusions 

In this paper, we propose two novel detection schemes for testing visual GUI layouts of Android 

applications. The schemes deal with two chaotic layout situations: (1) layout components are missing in 

different screen configurations, and (2) cropped text appears in different screen configurations. The schemes 

have been implemented in a framework to help developers discover the potential GUI layout problems. The 

empirical experiments show that the proposed schemes can effectively find the chaotic layout situations. In 

the future, we will discuss more chaotic layout problems and design new detection schemes. 

6. Acknowledgements 

This work was supported in part by the Ministry of Science and Technology, Taiwan under grant MOST 

105-2815-C-155-037-E and Yuan Ze University under grant 105-HRD-02. The authors would also like to 

express their sincere thanks to anonymous reviewers for their precious comments. 

7. References 

[1] AppBrain. Android apps on Google Play. https://www.appbrain.com/stats/number-of-android-apps. Last acceded 

on February 10, 2017. 

[2] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. D. Carmine, and G. Imparato. A Toolset for GUI Testing of 

Android Applications. In: Proc. of the 28th IEEE International Conference on Software Maintenance (ICSM 

2012), pp. 650-653, 2012. 

[3] B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon. GUITAR: An Innovative Tool for Automated Testing of 

GUI-driven Software. Automated Software Engineering. 2014, 21(1): 65-105. 

[4] H.-L. Wen, C.-H. Lin, T.-H. Hsieh, and C.-Z. Yang. PATS: A Parallel GUI Testing Framework for Android 

Applications. In: Proc. of the 39th Annual International Computers, Software & Applications Conference 

(COMPSAC 2015), pp. 210-215, 2015. 

[5] Android Developers. Supporting Multiple Screens. 

https://developer.android.com/guide/practices/screens_support.html. Last acceded on February 10, 2017. 

[6] E. Ch'ng and D. C. L. Ngo. Screen Design: a Dynamic Symmetry Grid based Approach. Displays. 2003, 24(3): 

125-135. 

[7] J. Hambidge. Elements of Dynamic Symmetry. Dover Publications Inc, New York, 1926. 

[8] M. Bauerly and Y. Liu. Computational Modeling and Experimental Investigation of Effects of Compositional 

Elements on Interface and Design Aesthetics. International Journal of Human-Computer Studies. 2006, 64(8): 

670-682. 

[9] Open Source Computer Vision (OpenCV). http//opencv.org. Last accessed on February 10, 2017. 

[10] C. Patel, A. Patel, and D. Patel. Optical Character Recognition by Open source OCR Tool Tesseract: A Case Study. 

International Journal of Computer Applications. 2012, 55(10): 50-56. 

Table 1: Experimental results of three test apps 

 Manual Detection UI-Explorer Detection 

App Name Component Missing Cropped Text Component Missing Cropped Text 

Textview     

Postfix Calculator     

MunchLife 1.4.4     

 

548




