

Formal Verification for AltaRica3.0 Models Based on SPIN

Hu Jun1, Li Wanqian 1, Wang Mingming 1 and Zhang Weijun 1

1 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
210016, NanJing, China

Abstract. AltaRica is a kind of modeling language for safety critical systems, AltaRica3.0 is its latest
version. There is still no corresponding formal verification method to analyze and verify the AltaRica3.0
model. The main work of this article is to analyze the AltaRica3.0 model by using a model test tool SPIN to
analyze the different characteristics of AltaRica3.0 in relation to the previous version. Considering the basic
structure of the underlying model GTS, based on the idea of AltaRica3.0 flattening to a GTS model, the core
conversion rules of the AltaRica3.0 model to Promela model and a conversion framework are proposed.
Based on the case analysis of the wheel brake system (WBS) in civil aircraft, the AltaRica3.0 model was
established, and the Promela model was generated by the conversion rule. According to the safety
requirements of the wheel brake system in 4761, SPIN is used to verify the system security attributes
formally.

Keywords: safety-critical system, AltaRica3.0, SPIN, Wheel Brake System.

1. Introduction
A appropriate safety assessment technique is required in the field of safety critical systems. Due to the

sharp increase in the complexity of compter systems, the method of Model Based Safety Analysis(MBSA)
gets much attention in the industrial field in recent years.

AltaRica[1] is an MBSA modeling language designed specifically for the safety assessment of industrial
systems by the French industrial and Academic Association[2]. AltaRica has elevated to the third generation
of AltaRica3.0[3]，which added support for the circulatory system and non-causal systems[4]，increasing the
application fields significantly. Currently there is no evaluation software which can provide perfect support
for AltaRica3.0. SPIN[5] which have been widely used in the safety analysis and evaluation software can
generate counter examples of validated models that are not passed for further analysis and evaluation to
further analyze and evaluate the model. Due to the input model of SPIN is Promela, it is necessary to convert
the AltaRica3.0 model into the Promela model[6]. This article provides a convertion method from
AltaRica3.0 to Promela model.

This article is organized as follows: chapter two introduces the basic concept of AltaRica3.0 language,
chapter three introduces the conversion method from AltaRica3.0 language to Promela language, chapter
four shows the example of modeling and transiting Wheel Brake System[7] in the avionics system, making
safety analysis and verification with SPIN according to its own characteristics.

2. AltaRica3.0 Language
The AltaRica language is a modeling language that describes constrained automata, and each component

is described as a constraint automaton. AltaRica language development has a total of three versions, namely
AltaRica Data-Flow1.0, AltaRica Data-Flow2.0 and AltaRica3.0[4]. In the version of AltaRica Data-Flow,
the model is based on data flow and does not support systems with loop and non-causalty. AltaRica3.0 is
based on GTS (Guarded Transition Systems), adding the support for loop by calculating FixPoint to maintain
the balance of the variables in the loop. Relative to the previous two versions, AltaRica3.0 can be used to

 Corresponding author. Tel.: 13952046531; fax: 86 25084896848.
 E-mail address: hujun.nju@139.com.

366

ISBN 978-981-11-3671-9
Proceedings of 2017 the 7th International Workshop on Computer Science and Engineering

(WCSE 2017)
Beijing, 25-27 June, 2017, pp. 3 66-3 70

admin
打字机文本
doi: 10.18178/wcse.2017.06.063

describe the circulatory system, but there is no relatively perfect verification tool. AltaRica3.0 model is
divided into four parts, variable definition, event definition, transition and assertion.

3. Transformation from AltaRica3.0 to Promela
Promela is a modeling language for concurrent systems and an input model for the exhaustive validation

tool SPIN. SPIN tools can perform exhaustive validation of the model. In addition, the SPIN tool can
simulate and validate the model with Linear Temporary Logic formula. It can display the state space of the
model, the size of the state space, the number of conversions, the depth of access and so on. The model can
also generate a counter example to modify the model. This section will describe the transformation from
AltaRica3.0 language to Promela language. Since the proposed method is based on the idea of AltaRica3.0
flattening to a GTS model, and the implementation of the GTS model is serial, so it only call the
initialization process when it is converted to Promela rather than create a child process, that means it uses a
single-process Promela model. Following will point out the several difficulties of conversion method.

3.1．Transformation of Class/Block
In the AltaRica3.0 model, the class and block are abstracts of the component. The difference between

them is that the block is a solid node and does not need to be instantiated before it can be used and can not be
multiplexed. But a block component can be embedded in another block. The class is an abstract node that
needs to be instantiated before it can be used. It can’t embed in entity nodes, but can be instantiated by
multiple objects. According to object-oriented ideas, classes and blocks are actually classes that encapsulate
data and operations, so when translated to Promela, the typedef of package data and the inline of the
encapsulation operation are used to represent classes or blocks.

The internal of class/block in AltaRica3.0 is generally divided into three parts, namely the variable
definition (including event definition), transition and assertion. According to the underlying GTS model, it is
known that the class will initialize the variable and then have the assertion. If the event occurs, it will first
trigger the transition, then implement the assertion. Otherwise will direct the end. So when translated to
Promela, the inline can be divided into five parts, namely variable definition, initialization assertion, event
trigger decision, transition execution and the second assertion operation. Depending on whether the event is
triggered or not, the execution will be different. The specific transition process is shown in Figure 1.

Fig.1: The transition of class

3.2．Transformation of FixPoint
AltaRica3.0 on the loop processing is done through the FixPoint. The system puts operations associated

with all the flow variables on the loop into a FixPoint, and then cycles through this operation until all the
values of flow variables on the loop do not change. Therefore the Promela loop operation can be very good
to complete this operation, which cycle implementation on all flow variables operations in the loop and the
exit cycle of the loop when all the flow variable values are unchangable.

3.3．Transition and Trigger of the Event
The occurrence of the transition is triggered by the event in AltaRica3.0. Promela language does not

have the concept of event, where the enumeration type (mtype) is selected to define the event variable. Since
multiple enumeration types are automatically merged into an enumeration type by the system in the Promela,
the event variables for all components in AltaRica3.0 are defined as enumeration values in the same
enumeration type. Because the enumeration values in the enumeration type can not be repeated, the duplicate

class class_1

 type var1;

...

end

class class_2

class_1 object;

 object.var1;

...

end

typedef class_1_typedef

{

 type var1;

 }

inline class_1_inline(class_1)

{

 class_1_typedef object1;

 }

typedef class_2_typedef

{

 }

Inline class_2_inline(class_2)

{

 class2.object1.var;

 }

367

enumeration values are removed. In addition, specify that the enumeration value "ZERO" indicates that no
event is triggered and its corresponding transition is jumped to the last of inline.

Each class/block can have multiple events in AltaRica3.0, but each time the maximum of
implementation is only one event (multiple events of the synchronization event is considered an event), and
also can not trigger any event. After the event is triggered, if the guard is satisfied then perform the
appropriate transition and implement the assertions, if not then get over. In Promela we use the if statement
to simulate the trigger of events in AltaRica3.0. There are a number of statements with "::" mark in if-fi
structure of Promela language. Each statement is composed by the guard and the implementation (if ignore
the guards then take them as true). When implement the structure of if-fi, we will select the statement which
the guard is true from the statement with the mark of ‘::’. And if there are multiple, one of them is randomly
executed. Thus, Promela will select randomly among the statement with the mark of ’::’ and without guard
which can simulate the trigger of event. The trigger of the event is shown in Figure 2.

3.4．Transformation of Synchronous
Similar with the processing of synchronization in AltaRica3.0 flattening into GTS model, transformation

of synchronous combines several synchronization events into a synchronization event, and then hides the
event marked with ‘hide’ from the model. Synchronization is divided into strong synchronization, weak
synchronization and CCF synchronization, the following describes the transformation process:

(1) Strong synchronization: Let two strong synchronization events be e1 and e2, which transitions are e1:
g1-> t1 and e2: g2-> t2. Then the strong synchronization event e:! E1 &! E2 is flattened into E: g1 & g2 ->
{t1; t2;}, then translate e as a normal event according to the method described in 3.3 to Promela statement.
Multiple events of the strong synchronization are the same.

(2) Weak synchronization: Let two weak synchronization events be e1 and e2, which transitions are e1:
g1-> t1 and e2: g2-> t2. Then the weak synchronization event e:? E1 & e2 is flattened into e : G1 | g2 -> {if
g1 then t1; if g2 then t2;}, then translate e as a normal event according to the method described in 3.3 to
Promela statement. Multiple events of the weak synchronization are the same.

(3) CCF synchronization: CCF synchronization is based on weak synchronization and have no hide mark.
Its transition method is the same as weak synchronization.

To fully describe the synchronization of the semantics will use the hide keyword, the event with the
keyword hide will not be compiled. That means the event with hide keyword will not be triggered. In order
to implement this functionality in the Promela language, you may wish to add variables to the list of
parameters in the inline to indicate which events are hidden which events are not hidden. Because hide
events often occurs when the upper component calls the underlying component, so whether or not to hide is
decided by its caller. Specifies how many bool variables are added to the parameter list in the number of
events that correspond to the events, and use these variables to indicate whether the event is hidden, true
indicates that event is hidden, false indicates that event is not hidden. Then add judgment in part of the
trigger of the event of inline, if an event is hidden, then the event will not be triggered. The specific transition
process is shown in Figure 2:

Fig. 2: The trigger of event and conversion of synchronization

4. Case Analysis of Wheel Brake System

class class_1

event enent1,event2;

transition

assertion

end

mtype {event1,event2,ZERO}

typedef class_1_typedef

{

 mtype event=ZERO;

}

inline

class_1_inline(class_1,event1_hide,event2_hide)

{

 if

 ::event1_hide==false->class_1.event=event1;

 ::event2_hide==false->class_1.event=event2;

 ::class_1.event=ZERO;

 fi

 noevent:skip;

 }

368

This section uses the design rules to verify the safety of the Wheel Brake System in the avionics system.
Firstly, the AltaRica3.0 model is established according to the description and requirements of the system.
Then, the AltaRica3.0 model is transformed into the Promela model. Finally, validate the Promela model
through the model detection tool SPIN and the safety requirements which satisfied by Linear Temporary
Logic (LTL) protocol formula and analyze the resulting validation results.

4.1．Introduction of the System
Wheel Brake System (WBS) is a typical system given in the Civil Aviation Standard SAE ARP4761[7].

The wheel brake system is mounted on the main landing gear of the aircraft, and the pressure on the main
wheel is given a minimum value to stop the aircraft during the landing, taxiing and other stages of the
aircraft. Each component is regulated to ensure that the final pressure value is greater than the threshold. The
whole Wheel Brake System is divided into Brake System Control Unit (BSCU) and Hydraulic Subsystem.

4.2．Verification and Analysis of Wheel Brake System
Modeling the Wheel Brake System with AltaRica3.0, then converting the model to Promela using the

method in Chapter 3, and finally using SPIN to validate and analyze the model. To ensure the safety of the
Wheel Brake System, it is necessary to require a hydraulic value which on the wheel to be greater than the
threshold. It requires that at least one hydraulic value of the normal or spare lines is greater than the
threshold[8]. The safety described by LTL is as follows: P1 := [](NorPressure>= ThresHold) |(AltPressure>=
ThresHold). Where NorPressure is the hydraulic value of normal line, AltPressure is the hydraulic value of
spare line, ThresHold is the threshold value. Verify the Promela model of the Wheel Brake System as shown
in Figure 3:

Fig. 3: Validation results before model modification

The result of the verification indicates that the LTL rule has not been verified. After analyzing the model,
it is found that the failure of the CMD / AS component may cause no output value when the system is in the
normal line, and the CMD / AS component is under the level of selector valve, its failure can not lead to the
selector valve to switch the system to the spare line, so it will lead to the failure of the entire system. When
the system is in the spare line, if the failure of blue hydraulic pump and the accumulator pump at the same
time will lead to no additional hydraulic pump to provide hydraulic value, resulting in the failure of the entire
system. In addition, ValueNoPressure in the command set adjusts the hydraulic value directly to zero,
resulting in failure of the entire system. If the current model is slightly modified, remove the failure of CMD
/ AS limit valve and the accumulator pump, and remove the ValueNoPressure command from the command
set to get a new model to import the new model and LTL rules into iSpin to verify. The entire verification
process lasts 15s. The results are shown in Figure 4:

Fig. 4: Validation results after model modification

369

The rule is validated within valid time, indicating that it is a failure of the key component and the
ValueNoPressure command which cause the failure, then indicating that there is a problem with the model
currently being established. In fact, some of the details of the Wheel Brake System in 4761 are not described
in detail, so many of the details of the modeling are by virtue of the understanding. According to the
verification results, we can know that the perfect direction of the model will be removing the hydraulic value
directly from the instruction set, adding the corresponding mechanism for the key module to improve the
safety, or setting the redundancy to improve the safety.

5. Conclusion
In this article, a conversion method from AltaRica3.0 to Promela model is proposed and proved formally.

Use the Wheel Brake System in SAE ARP4761 to establish the AltaRica3.0 model and transform it to
Promela model. Finally, Spin is used to analyze and verify the modified Promela model, the problems
existing in the model are found and the modification of the model is put forward.

The future work mainly includes two aspects: (1) Modify and improve the model to make it more in line
with safety standards for exposed problems of the Wheel Brake System model. (2) Improve the conversion
method, and through the preparation of software to transform the models automatically.

6. Acknowledgements
This work is Supported by: The National Basic Research Program of China (973 Program)

(2014CB744903); Funding of Jiangsu Innovation Program for Graduate Education (SJZZ16_006), the
Fundamental Research Funds for the Central Universities.

7. References
[1] Arnold, André, et al. "The AltaRica formalism for describing concurrent systems." Fundamenta Informaticae 40.2,

3 (1999): 109-124.

[2] Bieber, Pierre, et al. "Safety assessment with altarica." Building the Information Society. Springer US, 2004.
505-510.

[3] Prosvirnova, Tatiana, et al. "The altarica 3.0 project for model-based safety assessment." IFAC Proceedings

Volumes 46.22 (2013): 127-132.

[4] Batteux, M., T. Prosvirnova, and A. Rauzy. "AltaRica 3.0 Language Specification. November 2015." Altarica

association report (2015).

[5] Clarke, Edmund M., Orna Grumberg, and Doron Peled. Model checking. MIT press, 1999.

[6] Inverardi, Paola, Henry Muccini, and Patrizio Pelliccione. "Automated check of architectural models consistency
using SPIN." Automated Software Engineering, 2001.(ASE 2001). Proceedings. 16th Annual International

Conference on. IEEE, 2001.

[7] SAE International. Guidelines and methods for conducting the safety assessment process on civil airborne systems

and equipment. SAE International, 1996.

[8] Joshi, Anjali, et al. "Model-based safety analysis." (2006).

370

