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Abstract. Dimension reduction is a significant method of simplifying the study to reduce the dimensions of 

a dynamic system for technical applications in dimensional systems of science or engineering. Centre 

Manifold method is a mathematical prescription of reduction method in ordinary differential systems. In this 

paper, a local fractional centre manifold is introduced and applied to the fractional order Lorenz system. 
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1. Introduction  

The fractional calculus was first mentioned in in 1695 by Leibniz and L’Hospital. At the end of the 19-th 

century, Liouville and Riemann introduced the first definition of the fractional derivative [14]. In recent 

years, fractional calculus has attracted a number of authors for describing many mathematical problems in 

physics and engineering modelled by fractional differential equations [16]. According to variational principle, 

it is possible to construct a complete mechanical description of non-conservative system [12]. In 2002, the 

electrochemical processes and flexible robot arm are modelled by fractional order models [18]. A great 

number of fractional order model are found in Brownian motion, rheology, viscoelasticy, thermodynamics 

[18] 

Centre Manifold method is a rigorous formulation of this observation and it usually allows one to reduce 

a large problem to a much smaller one. The first rigorous outputs on invariant manifolds were presented by 

Hadamard (1901) [5], Lyapunov(1907) [7] and  Perron (1929) [10]. They proved the existence of stable and 

unstable manifolds for systems of differential equations and maps. As a significant reduction method, the 

centre manifold theory was first proposed in 1960s [11]. As an essential tool, it is applied for investigation of 

dynamics, such as bifurcation, stability, and perturbation [1, 4, 17]. 

In this paper, first,  some basic definition about fractional calculus are introduced, second, the centre 

Manifold of Fractional Dynamical System is deduced, and the unstable invariant manifold, stable invariant 

manifold and centre manifold are discussed. In the end, with some condition, the centre Manifold of 

fractional Lorenz system is analysed.  

2. Definition of Fractional System 

Definition 1 (Induced Matrix Norms [9]. A vector norm, defined on pC  for ,p m n , induces a matrix 

norm on m nC   by 
1

1
max   for ,  .m n n

x
A Ax A C x C 


                (1) 
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Definition 2 (Matrix 2-norm) the matrix 2-norm [9] is 

2

max2 21
max

x
A A Ax 


                       (2) 

Here nx R , 

1

2
2

1

n

i

i

x x


 
  
 
 , 

n nA R  , and 
max  is the largest number  such that TA A I is singular, 

n nI R   is diagonal matrix from the Eigen decomposition of A . 

Definition 3(The Euler Gamma function) The Euler Gamma function   is defined for 0x   as 

  1

0

t xx e t dt


                                    (3) 

Theorem 1 for all 1a  , the function [13] 

 
 

 

1

1

a
x

f x
ax

 

 

                            (4) 

is a decreasing function of 0x  . 

Corollary 1 for all 1a   and  0,1x , 

 

 

 

11
1

1 1

a
x

a ax

 
 

   
                            (5) 

Definition 4 (Real Mittag-Leffter function [15], The function :E R R   defined by 

 
 0

,   ,  0
1

i

i

x
E x x R

i
 







  
 

                                   (6) 

E  can be wrote as follows 

 
   0 1

,
1 1

i im

i i m

x x
E x

i i


 



  

 
   

                                    (7) 

From corollary 1  1 1i    for all 1i  . Let  0 1 1i   , here    is a floor function, which is the 

largest integer not bigger than x .  

If 01m i   

 

1

1 11 1

mi
i

i m i m

xx
x

i x


 

   

 
  

  .                           (8) 

If     0 ln 1 lni x x   and 1x  , then  
0 1

1i

i i

x i 


 

   . 

Lemma 1 When ,   0 1,   0 1,x q q       the Mittag-Leffler function is showed with 0   

 
     

0

0 00 1 1

,    
1 1 1

i i i i

i i i i i

x x x
E x

i i i
 

  

 

    

  
     

     (9) 

Definition 5 (Caputo Fractional derivative) The Caputo Fractional derivative [15] with order 

 1 ,   n n n Z       is defined as 

  
 

     
1

0,
0

1 nt n

c tD f t t f d


   


 

 
      (10) 

3. Centre manifold of Fractional Dynamical System 

Consider an autonomous fractional ordinary differential system, 

     0, ,   0,1 ,   n m

c tD x t w x x R             (11) 

where ,n m N  ， N  is positive integer. There are three hypnoses for the centre manifold: 0x   i.e. 

 0 0w  is an equilibrium point of Eq. 11; The eigenvalues of  0xw  are nonzero eigenvalue; 

The arguments of the eigenvalues    arg 0 2xw    

Based on these assumption, the system (Eq. 11) can be transformed into 
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   

   
0,

0,

, ,

, .

c t

c t

D y t Ay f y z

D z t Bz g y z





 

 
       (12) 

where 
ny R , mz R ,  0,1   and n nA R  , m mB R   are the linearized matrices. 

Remark 1 if there exist eigenvalues of  0xf  , whose arguments    arg 0 2xf   , the spectrum 

 0xE f   is divided into , ,u s c    three parts 

      

2,   if 

arg 2,   if 

2,   if 

u

s

c

E

  

   

  

 

 
 

     (13) 

Let , ,u s cE E E  be the unstable, stable, center subspace of , ,u s c   , then ,u sW W and cW are unstable 

invariant manifold, stable invariant manifold and center manifold which tangent to , ,u s cE E E  at equilibrium 

point 

When 1  ,  arg 2  ，then the stable region is the eigenvalue with negative real part. It is the 

same with the centre manifold of ordinary differential systems. 

Definition 6 (a local invariant manifold of fractional ordinary differential) consider a fractional ordinary 

differential system 

   0, .c tD x t w x        (14) 

If  0 ,   ,nx S R x t S    for t  . Here 0x  is the initial of Eq. 4.16 i.e.   00x x ,  x t  is the solution 

of Eq. 14,   is a suitably small positive number. 

Definition 7 (a local centre manifold of fractional ordinary differential system [8]) if a local invariant 

manifold  y h x  of Eq. 12 satisfy  0 0h  ,  0 0h  , the solution     ,x t y t  of Eq. 12, with initial 

condition     0 0 0 0, ,x y x h x , remain on the manifold  y h x  for sufficiently small t , it can be called a 

local centre manifold of fractional ordinary differential system. 

Theorem 4.2 There is a fractional manifold centre  y h x  in system (12), for x  , 0  , 2h C . 

4. Centre Manifold of Fractional-Order Lorenz System 

Let df
dt


 , Consider the fractional-order Lorenz system(3)  

   
 
 

,

,

.

α

α

α

f x σ y x

f y ρx y xz

f z bz xy

 

  

  

                                                 (15) 

The linearized system of Eq. 15 at  0,0,0O  

   
 
 

,

.

α

α

α

f x a y x

f y cx dy

f z bz

 

 

 

        (16) 

The Jacobin of Eq. 15 at  0,0,0O  is 

0

1 0

0 0

σ σ

J ρ

b

 
 

 
 
  

      (17) 

Then the characteristic equation  

     2 1+ +f λ λ b λ σ λ σ σρ                  (18) 

Therefore, eigenvalues of Eq. 15 are 1 b   ,      
2

2,3 1 2 1 4 1 2            

If 1,    and  
2

1 1 4     ,    
2

1 4 1 2      is an imaginary number, 2  and 3  are a pair of 

roots with positive real parts. 

Since b R , then  1arg 2    , for 0 1  .  

According to theorem 2, exists a fractional centre manifold  h x  for Eq. 15, if 

   2 3arg arg 2    , i.e.        
2

tan 2 1 4 1 1           , When 1 2  ,    
2

1 2    . 

328



But it is difficult to get the analytical expression of the centre manifold, according to theorem 4.3 a function 

is defined to approximate  h X  

     0,c tM X D X b X xy             (19) 

here     ,
T

X x t y t .  

Suppose  

       2 2 2

1 2X a x t a y t O X                (20) 

where 1a  and 2a  are undetermined coefficients. 

Let  x t  and  y t  be analytic function on  0,  

         
         

32

32

0 0 0 2

0 0 0 2

x t x x t x t O t

y t y y t y t O t

    

    

            (21) 

According to the property of Caputo derivate [15] with the initial condition    0 0 0x y   and  

                   
          

3 31 2 1 2 2 2 1 2 2 2

0, 0, 1 2 0, 1 2

5 23 2

1 2

0 0 2 0 0 2

2 0 5 2 2 0 5 2

c t t tD X D a x t a y t D a x t x t O t a y t y t O t

a x a y t O t

                 

     

 (22) 

In order to get      5 2 5 21 2

0,c tD x O t O x   , the suitable coefficients 
1 2a   and 

2 3a   are selected to 

make        1 22 0 5 2 2 0 5 2 0a x a y      and 
2 2

1 2 0a a  . Then the function    2 2 22 3X O X x y     is 

got.  

Then 

         5 2 2

0,c tM X D X b X xy O X bO X xy                    (23) 

From    2 2 22 3 6 2X O X x y xy      ,    2
12xy X O X  , therefore   2

xy O X , 

   5 2
M X O X   

According to theorem 3, the approximation of fractional centre manifold 

   5 2 2 22 3h X O X bx by xy     at the neighbour of equilibrium point as shown in fig. 1. b is the parameter 

of the system 15, for easy plotting, we set 30b  , then  

   5 2 2 260 90h X O X x y xy    . 

 
Fig. 1: The approximation of fractional centre manifold for system 15 

5. Conclusion 

In this paper, fractional centre manifold for fractional differential systems is introduced with the one of 

fractional order definition-Caputo derivative. Then, it is applied to analysis the property of the fractional 

differential Lorenz system, when the order 1/ 2  .  
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