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Abstract. Compressed sensing magnetic resonance imaging has been proved to be an efficient method to 

reconstruct MR images from highly under-sampled k-space data. Total variation (TV) and wavelet transform 

are two main sparsity expressions used as prior information in image recovery. In traditional TV, it just 

considers the sparse characteristic and ignores the group sparsity feature. In this paper, an extension of TV, 

named anisotropic overlapping sparse total variation (AOGSTV) is applied in the CS-MRI reconstruction 

process to reduce the staircase artifacts that always exist in TV model. A fast composite splitting algorithm 

(FCSA) is used to solve the AOGSTV problem. Radial sampling trajectory is used to under-sample the k-

space data. Experimental results demonstrate that our proposed method can achieve better quality than the 

other state-of-the-art methods. 
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1. Introduction 

In compressed sensing magnetic resonance imaging (CS-MRI), total variation (TV) is always introduced 

as prior information in imaging reconstruction process [1]. Although TV has advantage in edge-preserving in 

MRI reconstruction, it just considers the sparsity feature and ignores other useful information, which leads to 

some undesired staircase artifacts [2]. To overcome the drawback mentioned above, some extensions of TV 

have been put forward. Total generalized variation (TGV) considers a certain order of differences instead of 

only first-order difference [3]. Nonlocal TV (NLTV) was studied for MRI reconstruction by considering the 

nonlocal information of an image [4]. Although TGV and NLTV have advantage in reducing staircase 

artifacts, they involve higher computational complexity than conventional TV method. 

Recently, a novel denoising model named overlapping group sparsity total variation (OGSTV) was put 

forward for one-dimensional signal denoising [5]. It is assumed that the first-order difference of a signal is 

not only sparse but also contains a form of structured sparsity. That is, the large values of first-order 

difference function about a signal always arise near or adjacent to other large values, which can be regarded 

as a clustering or grouping property. The OGSTV model can reduce staircase artifacts efficiently and it can 

be solve by an majorization-minimization (MM) [6] algorithm that easy to calculate. 

In this paper, we extend the OGSTV model to CS-MRI reconstruction to reduce the staircase artifacts 

that always appeared in standard TV model. There are two regularizers in the reconstruction formulation: 

OGSTV on the horizontal direction and OGSTV on the vertical direction of a MR image. We refer to this 

new combination as anisotropic OGSTV (AOGSTV). The fast composite splitting algorithm (FCSA) [7] is 

employed to solve this AOGSTV model by decomposing the composite regularization problem into two 

simpler sub-problems. A series of experiments are conducted to demonstrate the superiority of our method 

over other state-of-the-art methods in reconstructing images from highly under-sampled k-space data. 

2. Proposed method 
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2.1. OGSTV for image denoising 

 Given a signal 1y R  n with white Gaussian noise 1R  n , and y = x + . The unknown signal x can be 

solved by the following optimization problem: 
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where D represents the first-order difference matrix and is a penalty function that promotes group sparsity. 
 is defined as follows with group size K : 
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If K=1 , (v) is the standard TV. If K>1 , (v)  is the OGSTV and (1) can be solved by MM algorithm. 

2.2. AOGSTV based CS-MRI 
When we consider OGSTV instead of TV as the penalty function in reconstructing process, the 

reconstruction model can be expressed in the following formulation: 
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2 AOGSTVx

1
x = argmin Ax - y +α x ,

2
  (3) 

where x is the vectorial form of an image to be reconstructed, y is the under-sampled k-space data. We can 

extend the group sparsity concept [5] to a two-dimensional sparse signal n nw R  , in which it contains 

K square points that starting at index (i, j) . Clearly, 
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The group size mentioned above is 2K , it can be seen as a square block of K K contiguous samples of 

w starting at index (i, j) . Here, we choose a group of entries adjacent to the objective point rather than a 

group following it along the horizontal and vertical direction only [8]. To our best knowledge, the former is 

better than latter in image reconstruction because there are more ambient pixels are considered. Then the 

overlapping group sparsity about two-dimensional signal can be defined as 
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φ(w) = w . 
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When i + k1or j + k2 outside the index of w , we take i+k1, j+k2w as zeros. The function mentioned above is 

convex. Next, mat means
2n 1 n nR R  and vec means

2n n n 1R R  . In this paper, we define the 
AOGSTV

x as 

follows: 

 
h vAOGSTV

x = φ(mat(D x)) +φ(mat(D x)),   (6) 

where hD and vD are the horizontal and vertical direction first-order difference of an image, respectively. 

2.3. FCSA based MR image reconstruction method 
For the composite regularization problem (AOGSTV) in (3) and (6), we can solve it efficiently with 

FCSA algorithm by decomposing it into two simpler sub-problems as shown at below: 

  2

h2x
min 1 2 Ax - y +αφ(mat(D x)) ,   (7) 

  2

v2x
min 1 2 Ax - y +αφ(mat(D x)) .   (8) 

In FISTA [9], authors consider the following optimization problem which can be extended into two parts: 

   Nmin F(x) f(x) + γg(x) ,x R ,    (9) 
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where 
2

2
f(x) = 1 2 Ax - y is a smooth convex function which is continuously differential with Lipschitz 

constant fL , and g(x) is a continuous non-smooth convex function like 1L norm, TV  norm and 

21OGSTV(L )  norm. Problem (9) can be reformulated as the following two sub-problems: 
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When the sub-problem in (10) refers to OGSTV, the sub-problem (10) can be solved as follows: 
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entries of   can be figured out by using conv2 function. By using MM algorithm, k+1x  can be solved as: 
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Then the FCSA-based CS-MRI reconstruction is summarized in Algorithm 1. 

Algorithm 1  FCSA for AOGSTV-based CS-MRI reconstruction 

Initialize: ρ=1/Lf, α, β, k = 1, r
1
= x

0
, t1= 1 

  While ||xn-xn-1||2 > tol or k< maxiter do 

1. u = r
k
− ρ∇ f(r

k
) 
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T
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k
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k
− x
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8. k = k + 1 

 End while 

3. Materials and methods 

In the experiments, neck MR raw data in Fig.1 (a) are employed to demonstrate the superiority of the 

proposed AOGSTV-based CS-MRI reconstruction method. The k-space data are obtained from a GE MR750 

3T scanner. Radial sampling pattern in Fig. 1(b) is implemented to under-sample the k-space data. 

  
(a) (b) 

 

Fig. 1: The under sampling trajectory and original MR image: (a) Neck MR image. (b) Radial under-sample pattern. 

In the following experiments, we compare our proposed method to the state-of-the-art algorithms such as 

CG [10], TVCMRI [11], RecPF [12], FCSA [6], WaTMRI [13] and FICOTA [14] at various sampling ratios. 

All the core codes are downloaded from the authors’ websites. The simulation processes are carried out in 

the same MATLAB programming environment, i.e. version R2015a. The experiments are conducted on a 

desktop computer with 3.2GHz Inter Core processor, 4G memory and windows 7 operating system and the 

white Gaussian noise with 0.01 standard deviation is added to k-space data. The parameter   is set as 0.05. 

We calculate Signal-to-Noise Ratio (SNR) and Structural Similarity (SSIM) [14] for comparison. 

4. Experiments and results 

4.1. Study on group size K 
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As shown in Fig.2, the group size K changes from 1 to 15 to test its influence on image reconstruction 

results. If K =1 , then
1

φ(w) = w and
AOGSTV

x is the standard anisotropic total variation (ATV). We can find 

that when the group size K changes from 1 to 2, the reconstructed image quality (SNR and SSIM) arises great. 

The best group size for reconstruction is 3. When K > 3  , the image quality becomes decline as K increases. 

  
  

 

Fig. 2: The SNRs and SSIMs of different group size K from 1 to 15 by 24.85% radial under-sample ratio. 

As the zoomed-in areas presented to us in Fig.3 (a) and Fig.3 (b), when K is 60, the reconstructed image 

becomes smoother and image resolution decreases. From Fig.2, we can also find that the values of SNR 

decline faster than SSIM. When K is 14, the value of SNR is smaller than that when K is 1, while SSIM is 

contrary. 

  
(a) (b) 

 

Fig. 3: The reconstructed and zoomed-in images, the sampling ratio is set as 24.85%.  (a) K=3; (b) K=60. 

4.2. Neck MR image experiments 
The neck MR image raw data are acquired under a T2-weighted Fast Recovery Fast Spin Echo (FRFSE) 

pulse sequence with the following parameters: Filed of View (FOV) =24cm, TR=2500ms, TE=110ms and 

matrix size=256×256. The reconstruction results from different algorithms are displayed in Fig.4. The 

iterations are all set as 50. The curve graphs in Fig.4 show the superiority of the proposed AOGSTV method 

over the other methods in holding highest value of SNR and keeping image structural information (SSIM). 

  
  

 

Fig. 4: SNRs and SSIMs under various sampling ratios for neck image reconstruction with different methods. 

The visual results at the sampling ratio of 24.85% are shown in Fig.5. As the reconstructed images and 

related zoomed-in parts displayed, the proposed method outperforms the other methods prominently. The 

proposed AOGSTV method has absolutely advantage in reducing staircase artifacts. 

     
(a) (b) (c) (d) (e) 
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Fig. 5: Neck MR image and part zoomed-in reconstruction results by different methods. (a) original neck image; (b) 

part zoomed-in original image; (c) CG method; (d) TVCMRI method; (e) RecPF method; (f) FCSA method; (g) 

WaTMRI method; (h) FICOTA method; (i) AOGSTV method. 

5. Discussion 

The proposed AOGSTV method considers the overlapping group sparsity characteristic instead of only 

the sparsity feature of total variation. By taking account into the adjacent values of one objective point, 

AOGSTV method can alleviates the staircase artifacts that often appear in total variation effectively. When 

the group size K is larger than 3, the reconstructed image becomes smoother as K increases, and the image 

resolution declines. So in the CS-MRI reconstruction process, we should choose an appropriate K for the 

best image quality. How to apply the AOGSTV to parallel MR images and dynamic MR images is the next 

work we want to exploit. 

6. Conclusion 

In this paper, an AOGSTV-based method is put forward for CS-MRI reconstruction. When k-space data 

are highly under-sampled, it can get less staircase artifacts that caused by TV. We solve the AOGSTV 

problem by FCSA algorithm, and divide it into two simpler sub-problems which can be solved by FISTA. 

The experimental results indicate that the proposed method is capable of achieving significant improvement 

of image quality with highest value of SNR and the strongest ability to keep image structural information. 
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