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Abstract. The total variation denoising model is considered to be one of the best denoising models. 

However, the total variation model always introduces stair-case artifacts. To overcome the drawback, we use 

an overlapping group sparsity total variation instead of total variation denoising model. By introducing fast 

Fourier transform and split Bregman iteration framework, we propose a fast algorithm to solve the 

overlapping group sparse model. Experiments are carried out to compare with the traditional TV denoising 

method and state-of-the-art total generalized variation method. The experiments demonstrate that our 

algorithm avoids stair-case of traditional TV model. 
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1. Introduction 

Rudin, Osher and Fatemi proposed the well-known total variation (TV) denoising model[1]. The TV 

denoising model achieves promising denoising performance. However, the first order TV assumes images to 

be piece-wise constant, which introduce stair-case artifacts. To overcome the drawback mentioned above, 

some extensions of TV have been put forward. For example, total generalized variation (TGV)[2] is proved 

to be a good way to reduce stair-case artifacts. 

Recently, an overlapping group sparsity (OGS) total variation model was firstly put forward for one-

dimensional signal denoising[3]. As first-order difference of signal is not only sparse but also contains a 

form of structured sparsity, the OGS total variation model can fit the prior knowledge and reduce staircase 

artifacts efficiently. Liu, Huang, et al applied the OGS TV model in image deburring[4] under the framework 

of alternating direction method of multipliers. Considering that the OGS TV model is a complex problem, 

we use split Bregman iterations[5] to transform the issue into some sub problems which are easier to solve. 

Considering that the efficiency of fast Fourier transform (FFT) is high[6], we introduce FFT to improve the 

sub problem of split Bregman iterations. In this way, the method we proposed can avoid large size matrix 

multiplication. As a result, the whole computational efficiency is improved prominently.  

The rest of this paper is organized as follows. We first review the traditional TV denoising model in 

section 2. Then, the proposed method is shown in section 3. In section 4, we carry out some experiments to 

demonstrate the proposed method. At last, we summarize the whole algorithm and provide some possible 

directions for further studies. 

2. Preparation 

The TV denoising model is shown as follow [1]. (remark: considering using the FFT in the proposed 
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method, we assume that the image satisfies the periodic boundary condition.)
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where 
2 1N g R  is the vectorial form of image with noise (for simplify, we assume the image size is N N ). 

2 1N f R  represents the recovered image by TV denoising model. N  is the image size. ( )R f  represents 

the  regularity term.   denotes the regularity parameter balancing the fidelity term and the regularity term. 

The classical anisotropic total variation is defined as 
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where h  and v  denote horizontal and vertical differential matrix. They can be calculated by (3). 
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where I  is the identity matrix and   denotes the kronecker operator. As we assume the image satisfies the 

periodic boundary condition, we define 0vD  as 
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0vD R . The traditional TV model 

may lead to stair-case artifacts, which will be shown in section 4. In the next section, we will propose an 

OGS based model to overcome the drawback of traditional TV model. 

3. Method 

In this section, we introduce the overlapping group sparsity TV model to improve the denoising 

performance, that is 
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where 
2 1N v R  is stacked in column-wisely, that is , the ( , )i j th entry of a matrix N NV R  is assigned to 

be the ( 1)j N i  th entry of the vector v . 
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As is seen in formula (4), the structured sparsity information of neighbouring pixels is considered. As a 

result, the stair-case artifacts can be eliminated. To solve the problem defined in (4), we can introduce some 

split variables, which are 1 hz f , 2 vz f ,Then we get 
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The optimization problem in (6) can be solved by split Bregman iterations as follows 
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where 
~ ~

1 2z ,z  are the dual variables of 1 2z , z . 

According to (7), the f  sub problem can be solved by the sub objective function shown as follow 
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Setting the derivative of f in formula (8) to zero, then we have 
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Formula (9) can be solved by using conjugate gradient method (CGM). However, In (9), there are two 

large size matrix (for example, 
2 2N Nh R  ) multiplications. Because the computational complexity of 

multiplication is 2 3(( ) )NO , the computing efficiency is not very high by using CGM. 

To avoid large size matrix multiplication in (9), we rewrite formula (8) as matrix convolution form. In 

this way, the computational complexity becomes 2

2( log ( ))N NO . 
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where =[1,-1]hK  is the horizontal convolution kernel and [1; 1] vK  is the vertical convolution kernel. 

Therefore, hK  and vK  are consistent with equation (3). The symbol *  is the two-dimensional convolution 

operator. ( 1,2) N N

i i  (k)
RZ  are the matrix form of ( 1,2)i i z . 
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( 1,2)i i z . N NG R  is the matrix form of the observed image. 
2

  represents the entrywise L2 norm of 

matrix.  

Setting the first-order derivative with regard to F  to zero, then we have 
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where 2 DF  and -1

2DF  represent the 2D FFT and IFFT operator respectively. The symbol denotes 

componentwise multiplication. The division in (11) is componentwise as well. 
( +1)k

f  can be obtained by 

vectorize ( 1)k
F . The symbol 1 represents the matrix with every element is 1. 

The ( 1,2)i i z  sub problem can be easily solved by the sub objective function shown in (12). 
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According to the majorization minimization (MM) method[7], the ( 1,2)i i z  sub problem can be easily 

solved by the recursive iterations shown as follows 
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where 
2 2N NI R  denotes the unit matrix. ( 1)

( ) ( 1,2)k

i n i z  denotes the n-th inner iteration of MM method in 

the (k+1)-th external circulation. 
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where Z  is the matrix form of z . 

According to the principle of split Bregman iteration, the dual variable can be update as follows 
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The whole algorithm is summarized in Table 1. 

Table 1. Pseudo-code of proposed method 

Algorithm 1 Pseudo-code of proposed method 

Initialize:
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End while 

4. Experiment 

In this section, we show the denoising result of our method (we name it OGSTV-FFT for short) 

comparing with the traditional TV model and total generalized variation model which is state-of-the-art TV 

model. Fig 1 shows the denoising results by different methods. In our experiment, we set =3K . 

     

(a) (b) (c) (d) (e) 

     

(f) (g) (h) (i) (j) 

Fig 1: Denoising results of different methods.(a) Ground truth.(b) Image with noise (the noise is  the white Gaussian 
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noise with zero mean and standard deviation 20  ).(c) The ATV denoising result. (d) The TGV denoising result. (e) 

The proposed method. (f)-(j) are the partial enlarged detail of (a)-(e). 

As is seen in Fig 1(h), the ATV model has stair-case artifacts. The denoising result obtained by our 

method reduce the stair-case artifacts obviously (shown in Fig 1(j)). To evaluate the proposed algorithm 

performance objectively, we use peak signal to noise ratio (PSNR) and structural similarity (SSIM) shown in 

Table 2, comparing with the ATV model and TGV model. The best records are marked in bold. 

Table 2. Comparison of experimental results 

  Methods PSNR SSIM Time 

10 ATV 32.237 0.883 1.27 

TGV 32.430 0.890 1.39 

OGSTV-FFT 32.650 0.892 1.20 

20 ATV 28.632 0.800 1.44 

TGV 28.974 0.817 2.06 

OGSTV-FFT 28.990 0.819 1.23 

50 ATV 24.581 0.687 2.45 

TGV 24.708 0.682 2.19 

OGSTV-FFT 24.939 0.698 2.31 

100 ATV 21.221 0.561 2.50 

TGV 21.289 0.552 2.33 

OGSTV-FFT 21.323 0.569 7.31 

As shown in Table 2, the PSNR and SSIM obtained by our method are higher than the ones obtained by 

the other two models. What’s more, for the application of FFT, our method works very efficiently although 

the denoising model becomes more complex than ATV model. 

5. Conclusion  

In this paper, we propose an efficient method solving the OGS total variation denoising model based on 

FFT and split Bregman iteration. The proposed method considers structured sparsity of total variation instead 

of the sparsity feature of total variation, alleviating the stair-case artifacts appeared in total variation. The 

experimental results indicate that the proposed method performs better than ATV and TGV method. By 

using FFT, it is very efficient to solve the sub problem of whole algorithm. Since the proposed TV model is a 

general regular term, it can be applied in the other kinds of noise in further studies. 
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