
Automatic Integrated Test of Phased Mission Systems Oriented to

Earthquake Response

Jiangong Song

, Qinyong Li, Jianghua Lv and Shilong Ma

Beihang University, Beijing, China

Abstract. Since violent earthquakes occur frequently at home and abroad, for a class of mission systems in

earthquake response and process, called phased mission systems, we propose an automatic integrated test

method based on model checking to satisfy the need of complexity and trustworthiness required by phased

mission systems. We build an automatic test system and test environment, and give a model of phased

mission systems by system windows tree model, and also give a theoretical state diagram model. Based on

model checking, an automatic test method for phased mission system is proposed, and an evaluation

algorithm for systems trustworthiness is applied in a case study of the System of International Earthquake

Response.

Keywords: formal methods, model checking, phased mission system, earthquake response and process,

integrated test method

1. Introduction

In recent years, earthquake disaster frequently occurs, that according to the official website of China

Earthquake Administration statistics, from January 1, 2007 to May 31, 2016 in the world more than

magnitude-7 earthquake occurred 197[1], of which most earthquakes caused great losses to human life and

property. Therefore, it is very important in theory and practice to study the emergency response of the

disaster. Earthquake emergency response system is a complex time-constrained phased mission

system(PMS). Any errors in the system will cause serious or even catastrophic consequences. Hence,

software trustworthiness is that the behaviors and results of software systems can be predictable, states can

be monitored, results can be assessed, and exceptions can be controllable

[2,3].

In recent years, Scholars have studied various ways to improve the trustworthiness of software. Such as

modelling of the testability requirements analysis

[4], reliability modelling of PMS by fault tree

[5],

multivalued decision diagrams[6], self-trust model based on semi-Markov performance evaluation[7],etc.

Automatic testing is an important guarantee for the trustworthiness of such systems. Judging the software

features suitable for automatic test

[8], and the cost of software development was studied by Siemens and

Saab[9]. The formal analysis methods of security critical systems such as phased mission systems include

formal modelling and formal verification. Finite automata is a widely used formal modelling

method[10];The formal verification method of model checking in system state space search based on the

nature of the final can prove that expectations are met

[11]. Many researchers try to reduce time complexity

of computation by studying on all kind of methods to reduce the state space[12-22]. From the above research,

we can see that the previous methods are more concerned about the design of the system itself and the

correctness of the analysis.

This paper discusses the formal method of earthquake emergency response phased mission system

testing. Based on the definition of window tree model of the system and system state transition diagram

 Corresponding author. Tel.: +86-010- 82317643; fax: +86-010- 82317598.

 E-mail address: sjg@buaa.edu.cn

224

ISBN 978-981-11-3671-9

Proceedings of 2017 the 7th International Workshop on Computer Science and Engineering

(WCSE 2017)

Beijing, 25-27 June, 2017, pp. 224 -23 2

admin
打字机文本
doi: 10.18178/wcse.2017.06.039

model of system, describes the behaviour correctness of system under testing. Put forward the method of

automatic generation of test cases and model checking algorithm based on the two kinds of models, and

proposed the evaluation system of trustworthiness.

2. Formal Modeling of Phased Mission System

2.1. System Window Tree Modeling

The system window tree model is on the actual function and operation behavior of the system, the

execution of mission system can be regarded as consisting of a large number of windows, from a window to

another window is generally by one or more events. Because of the difference of parameters, the different

API will be called, and different branches will be formed. We call it the system window tree, as shown in

Figure 1[23], the top window of the graph consists of 3 different API, which can be entered into different

windows by calling different APIs.

Fig. 1: Typical windows tree[23]

Definition 1: window. window=(wname, Ws, R, S) , where,

wname is the name of the window; Ws is subsequent windows set of the window; R is API called for

reaching the window; S is all possible state set for reaching the window.

Definition2: System Window Tree(SWT). SWT={(<wi,wj>,ei,j) | wi,wj∈W, ei,j∈E},where,

(<wi,wj>,ei,j) is the transition between windows, and wi transits to wj by ei,j, and 0≤i, j≤n, the number n

is total window. If wi=null and ei,j=null, it is root of the tree, or wj=null and ei,j=null, it is leaf of the tree; W

is the set of windows; E is the set of events, that is the set of API.

Definition 3: Phased Mission System(PMS).

PMS=<OnDuty, MissionCaptured, MissionReponse, MissionDeal> ,where,

OnDuty is the phase of On-duty; MissionCaptured is the phase of mission object captured;

MissionResponse is the phase of response; MissionDeal is the phase of analysis and process.

The PMS defined in this paper is a kind of phased mission system oriented to disaster emergency

response, which is divided into 4 typical phases. The 4 phases are sequential.

2.2. System State Transition Diagram Modeling

The mission system under test is divided into phases, the behaviour subject of the system is defined, and

the behaviour subject is modelled, and the state set of the behaviour subject is determined by the state set of

the all elements of a given system. Mission is the behavor subject of phased mission system.

Definition 4: mission. mission=(flow, data, webpage), where,

 mission is a special mission; flow is a special data flow path; data is a special result of professional

model calculation from a form; webpage is information processed from Internet.

Definition 5: mission_state.  _ _ , _ , _mission state flow state data state webpage state

where, mission_state is the state of a special mission; flow_state is the state of a special data flow path;

data_state is the state of a data form; webpage_state is the state of an information from Internet. The mission

state is decided by the state of each tuple.

225

Definition 6: Flow_State_Set.  _ _ _ (1.. 0)|iFlow State Set flow state i m m   , flow_statei is ith state

of a flow path.

Definition 7: Data_State_Set.  _ _ _ (| 1.. 0)iData State Set data state i n n   , data_statei is ith state

of a data form.

Definition 8: Webpage_State_Set.

 _ _ _ (1.)| . 0iWebpage State Set webpage state i p p   , webpage_statei is ith state of information from

Internet.

Definition 9:Mission_State_Set.

  _ _ _ , _ , _ 1.. , 1.. , 1..|i j kMission State Set flow state report state webpage state m j n k p  

_ _ _ _ _ _Flow State Set Data State Set Webpage State Set   ,

Flow_State_Set×Data_State_set×Webpage_State_Set is the full set of system. For any particular phase

mission system, there may be redundant or inconsistent with the design of the system,

MISSION_STATE_SET is the sub-set of the full set.

Definition 10: API_Set.  _ 1..|iAPI Set API i m  , it is API set of system.

The state transition of the phased mission system is due to the running of the application access

interface (API), and the state transition can be represented by three tuple.

Definition 11: state_transition.  _ _ , _ , call
i j i

state transition mission state mission state API ,

and _ , _ _ _i jmission state mission state MISSION STATE SET ; _API API SET
i
 .The system state is

transited from _ imission state to _ jmission state by calling APIi once.

Definition 12: System State Transition Diagram(SSTD).  _ | 1..kSSTD state transition k p  ,

_ kstate transition

is the system state transition once, and p is sum of all transitions.

3. Model Checking method to Phased Mission System

3.1. Test Coverage Based on the Path

In the field of software testing, test coverage is used to describe the extent to which the system is tested.

The commonly used coverage criteria are: functional coverage, statement coverage, branch coverage, and

condition coverage. In this paper, test coverage is based on the path and the test case set is generated by the

window tree model, each path on the window tree represents a process of the actual operation of the system.

The test case is defined as a path from the root node of the window to the leaf node. For a window tree,

all test cases belong to the test case set.

3.2. Automatic Test Case Generation

Window tree model is a tree structure, by the tree traversal automatically generate test cases, the API

sequence from the root node to the leaf node traversal path is saved as a test case. The algorithm of

automatically generating test cases by the window tree is shown in algorithm 1

Algorithm 1. The algorithm of automatically generating test cases

Input: Node: root.

Output: Set:set. //set is test case set

Read XMLfile

Wirte tree_map

Set current_rode to root

Empty temp_api_list

Call Ergodic(current_root)

function Ergodic(root)

 if root != null then

 api ← root.api

 temp_api_list.push(api)

 foreach item ← root.sons

 Ergodic(tree_map[item])

 endforeach

226

 if root.sons.size == 0 then

 test_cases.add(temp_api_list)

 endif

 temp_api_list.pop()

 endif

endfunction

3.3. Model Checking Method

The model checking algorithm is shown in algorithm 2. First, a test case is read, and then the current

API is executed in the system under test. After each execution, the state transition of the system under test is

checked to meet the finite state machine. The test cases run successfully if the entire APIs called completely

in the test case meet the state transition rules. Otherwise, the system displays error message, that indicates

the test case failed to run.

Algorithm 2. Model checking algorithm

Input: Test_Case: test_case.

Output: Bollean: last_state. //last_state is test result: pass or error

api ← now_message.params[0]

state ← now_message.params[1]

b_find ← false

b_state_same ← false

b_api_same ← false

vertex ← graph[last_state_id]

foreach item ← vertex.edges

id = item.id

if graph[id].state == state then

 b_state_same ← true

endif

 if api == item.api then

 b_api_same ← true

endif

if b_state_same and b_api_same then

 b_find = true

 last_state_id ← state.id

 last_state ← state

 api_run_statistics[api].correct_time++

 endif

endforeach

if !b_find then

 last_state_id ← state.id

 last_state ← state

 api_run_statistics[api].fault_time++

endif

3.4. Trustworthiness evaluation model based on model checking

The quantitative evaluation of the model test results can directly reflect the trustworthiness of the

system under test. But for the trustworthiness evaluation of a system is not simply evaluated by a single

variable, because the trustworthiness of the system is often affected by many factors, and the weights of

these factors are different. In this paper, the trustworthiness evaluation based on model checking is evaluated

according to the transition of finite state machine.

A test case set contains many test cases, and each test case contains several different APIs. Different

important degree of API in the system decides different weight of API. When any API is executed, the finite

state machine checks whether the state transition is expected.

As shown in Figure 2, for the state of Si in the diagram, when the API is called, the state transition of the

system under test is not consistent with the theoretical transition, then the API is recorded as error once,

otherwise the API is recorded as correct.

After the test case set TS is run, each API in the system is calculated with the correct operation times Gi

and the number of errors as Bi.

227

Si

Sj

actual transition

Si+1

theoretical transition

…… ……

……

Fig. 2: State transition

Therefore, the trustworthiness of the system under system is shown in Formula (1).

 

 

1

1

K

i i

i
es K

i i i

i

G M

R

G B M









   





 (1)

where, Res is the result of system trustworthiness,0≤Res≤1; Gi is the correct times of API called; Bi is

the error times of API called; Mi is the weight of ith API, iM ≥0 and
1

1

K

i
iM



 .

4. Application

4.1. Automatic test framework and system implementation

In this paper, we design a framework for automatic testing based on model checking, as shown in Figure

3, which has already applied to test the System of International Earthquake Response, a national project held

by National Earthquake Response Support Service (NERSS).

Automatic test system based on model checking Automatic test framework

Windows

tree model

file

Automatic

Test Case

Generation

module

Test case set

(API Sequnce)

s0 s1 s2 ... si ...

System states transition sequence

State

Transition

Diagram

model file

FSM

Trustworthiness

evaluation module

Match

results

Trustworthiness

report

Observer
module

System
under test

Message

factory

Message

center

Test case

execution

module

Fig. 3: Automatic test architecture based on model checking

As shown in Figure 3, according to the state of the system under test, testing framework and testing

system of negotiated data format, the state and other relevant information (such as time, type) encapsulated

into a packet, the packet is sent to the automatic test system via network. In Figure 4, the SUT With

TestFrame is composed of the system under test and the testing framework, and the rest of the class forms an

automatic test system based on model checking. Automatic Test Case Generation consists of

TestCaseMaking, TreeNode and States. The model checking component is composed of ObserverTree,

GraphVertex and States.

228

TestCaseMaking

-List<APIList> m_apiLists;

+static TestCaseMaking GetSharedInst();

-List<String> m_tempApis;
-m_obTreeRoot;

#TestMaking();

-static TestCaseMaking m_pTestCaseMaking;
-HashMapM<String, TreeNode> m_treeNodesMap;

+List<APIList> CreateTestCase();
- APIList CacheToReal();

+ void AnalysisTreeXml(String path);
+ void Ergodic(TreeNode root);

Class - TreeNode

+List<String> sonsList;

+TreeNode();

+String api;
+String name;

+States state;

Class - States

+List<String> paramsList;

+boolean equals(Object o);
+States();

+String toString();

Class From TestFrame- Observer

Class - ObserverStates

-States m_pLastState;

+void StateGraphInit(String path);

-HashMap<String,GraphVertex> graph;

+static Observer CreateNewObject();

-String m_obGraphStart;
-String m_obLastId;

+ObserverStates();

+void DoWork();

-boolean m_bStop;

Class - GraphVertex

+States state;
+String id;

+HashMap<String, String> edges;

+GraphVertex();

Fig. 4: Automatic test framework based on model checking

4.2. The test results and trustworthiness

Before testing and evaluating the trustworthiness of the system under test, the formal model is

constructed, and the window tree model and the state transition graph model are constructed.
ALARM

sub-system

window

INIT_SEARCH

MODEL_CAPTURE

_ALARM

Internet

webpages

process sub-

system

window

Internet

search

window

START_SEARCH

Model

calculate sub-

system

window

Disaster

model

calculate

window

MODEL_CALCULATE

Webpages

clear window

CLEAR_DATA

Data

statistics

window

START_STATISTICS

Generate

report

window

ALARM on-

duty window

View report

window

VIEW_REPORT_FORM

Edit report

window

EDIT_REPORT_FORM

Generate

summary

window

GENERATE_SUMMARY

GENERATE_REPORT

Report fill in

template

window

Send report

form window

SEND_REPORT_FORM

REPORT_FILLIN_TEMPLATE

View

summary

window

VIEW_SUMMARY_FORM

Edit

summary

window

EDIT_SUMMARY_FORM

Summary fill

in template

window

Send

summary

form

SEND_SUMMARY_FORM

SUMMARY_FILLIN_TEMPLATE

View result

window

VIEW_MODEL_FORM

Expert edit

result

window

EDIT_MODEL_FORM

Model result

fill in

template

window

Send model

results

window

SEND_MODEL_FORM

MODEL_FILLIN_TEMPLATE

INFO_CAPTURE

_ALARM

Fig. 5: The windows tree of the System of International Earthquake Response

The System of International Earthquake Response window tree model, as shown in Figure 5, has a total

of 6 paths from the root node to the leaf node, which will generate a test case set containing the 6 test cases.

229

(Creating,

Creating,

Initializing)

(Waiting,

Creating,

Statistics)

(Waiting,

Creating,

Initializing)

CLEAR_DATA

(null,

Creating,

null)

INIT_SEARCH

INFO_CAPTURE_ALARM

Start

(Waiting,

Creating,

Clearing)

START_STASTICS

(Waiting,

Creating,

Generating

summary)

GENERATE_SUMMARY

(Waiting,

Creating,

Generating

report)

GENERATE_REPORT
(Waiting,

Creating,

Searching)

START_SEARCH

(Waiting,

Creating,

Searching)

MODEL_CALCULATE

(Waiting,Fill-

in-template,

clearing)

MODEL_FILLIN_TEMPLATE

(Flowing,

Editing,

Statistics)

SEND_MODEL_FORM

(End，null，
Generating

summary)

VIEW_MODEL_FORM

(Waiting,

Editing,

Generating

report)

EDIT_MODEL_FORM

(Waiting,

Fill-in-template,

Generating

summary)

SUMMARY_FILLIN_TEMPLATE

(Flowing,

Editing,

Generating

summary)

SEND_SUMMARY_FORM

(End，null，
null)

VIEW_SUMMARY_FORM
(Waiting,

Editing,

Generating

summary)

EDIT_SUMMARY_FORM

(Waiting,

Fill-in-template,

Generating

report)

REPORT_FILLIN_TEMPLATE

(Flowing,

Editing,

Generating

report)

SEND_REPORT_FORM

(End, null，
null)

VIEW_REPORT_FORM

(Waiting,

Editing,

Generating

report)

EDIT_REPORT_FORM

(Waiting,

Creating,

Initializing)

MODEL_CAPTURE_ALARM

Fig. 6: System of International Earthquake Response state transition diagram

The state transition diagram of the System of International Earthquake Response is shown in Figure 6,

which is the theoretical state transition of the system.

Fig. 7: The Chinese GUI screenshot of test case set Fig. 8: The part of Chinese GUI results screenshot of

 generated according to system windows tree trustworthiness evaluation based on model checking

Figure 7 shows a screenshot of test case set generated automatically once based on the system window

tree, which contains 6 test cases that are composed of API sequences. Figure 8 shows the trustworthiness

evaluation value of the System Under Test after a model checking. For showing the reality of the experiment,

the original experiments screenshots with Chinese in Figure 7 and Figure 8 are introduced in the paper. The

text comparison of Chinese and English is shown in Table 1.

Table 1 The comparison of Chinese and English in the Fig.7 and Fig.8

Fig. 7 Fig. 8

 test cases list test cases pass times

 test case number 0: test cases fail pass times

…… …… test cases run times correctly

 test case number 5: Trustworthiness Value R

Table 2 Trustworthiness results comparison

Test NO
Trustworthiness

Value R
APIs of cause state transition incorrectly

1 0.7901
INFO_CAPTURE_ALARM(1), CLEAR_DATA(2),

EDIT_SUMMARY_FORM(2), START_STATISTICS(3)

2 0.8537
REPORT_FILLIN_TEMPLATE(1),VIEW_REPORT_FORM(1),

GENERATE_SUMMARY(3), SUMMARY_FILLIN_TEMPLATE(2)

3 0.8776 EDIT_SUMMARY_FORM(1),MODEL_FILLIN_TEMPLATE(2),

230

SEND_MODEL_FORM(2),VIEW_REPORT_FORM(1)

4 0.9118 MODEL_CALCULATE(2)

5 0.9847 VIEW_MODEL_FORM(1)

As shown in Table 2, by the 5 times iteration test, the error of the system has been improved, and the

trustworthiness of the system has been improved gradually, as shown in table 1. The third column of the

table is API that causes the state transition to be incorrect, and the number in parentheses is times of the API

call failed.

5. Conclusions and Future Work

In this paper, by the analysis of the typical phased mission system oriented to the earthquake response,

puts forward a testing technology based on model testing, automatic test case generation based on the

window tree and model checking method, based on trustworthiness evaluation algorithm with the weight of

API to solve the problem of trustworthiness of large-scale phased mission system. Further work will study

the problem of automatic generation and automatic adjustment of API weight.

6. Acknowledgements

The authors thank the anonymous reviewers for their insightful and constructive comments. This

research work is supported by Social Service Project in National Earthquake Response Support Service

“International Rescue and Disposition System against Strong Earthquakes” (NO.SJZX-B11).

7. References

[1] History earthquake list. China Earthquake Administration.

http://www.cea.gov.cn/publish/dizhenj/468/496/index.html,2016-06-14.

[2] Zheng ZM, Ma SL, Li W, Wei W, Jiang X, Zhang ZL, Guo BH. Dynamical characteristics of software

trustworthiness and their evolutionary complexity. Science in China (Series F: Information Sciences),

2009,52(8):1328−1334. [doi: 10.1007/s11432-009-0137-2]

[3] Zheng ZM, Ma SL, Li W, Jiang X, Wei W, Ma L, Tang ST. Complexity of software trustworthiness and its

dynamical statistical analysis methods. Science in China (Series F: Information Sciences), 2009,52(9):1651−1657.

[doi: 10.1007/s11432-009-0143-4]

[4] Su YD, Liu GJ, Qiu J. DSPN-based testability requirement modeling and analysis of phased-mission systems.

Systems Enginering-Theory & Practice. 2010, 30(7): 1272 (in Chinese with English abstract).

[5] Xing T. Research on the reliability model for phased mission system. Journal of Naval Aeronautical Engineering

Institute. 2006, 21(1): 172(in Chinese with English abstract).

[6] Mo Y, Xing LD. MDD-based method for efficient analysis on phased-mission systems with multimode failures.

IEEE Trans. on Systems, Man, and Cybernetics: Systems. 2014, 44(6): 757.

[7] Wang HQ, Lü HW, Zhao Q, Dong XK, Feng GS. Model and quantification of autonomic dependability of

mission-critical systems. Journal of Software. 2010,21(2):344-358(in Chinese with English abstract).

[8] Li YZ. How to use automatic test efficiently in software test. Journal of Changsha Communication University.

2006,22(2): 63(in Chinese with English abstract).

[9] Emil A, Robert F, Pirjo K. Maintenance of automated test suites in industry: An empirical study on Visual GUI

Testing. Information and Software Technology. 2016, 66–80.

[10] Hu JQ. Research on some key technologies of Web Service discovery [Ph.D. Thesis]. Changsha: Dissertation for

Doctoral Degree of School of National University of Defense Technology, 2005 (in Chinese with English abstract).

[11] Zhang T. Research on formal verification methods of model of complicated information system [Ph.D. Thesis].

Harbin: Harbin Engineering University, 2011 (in Chinese with English abstract).

[12] I.C. Norris, D. Dill, “Better verification through symmetry,” Formal Methods in System Design, 1996, vol.

9(1/2),pp.41-75.

231

[13] A. Sistla, P. Godefroid, “Symmetry and reduced symmetry in model checking,” CAV. LNCS 2012, 2001,pp.91-

103.

[14] R. Iosif, “Symmetry reduction criteria for software model checking,” Proceedings of SPIN Workshop. LNCS 2318,

2002,pp.22-41.

[15] D. Bosnacki, “A light-weight algorithm for model checking with symmetry reduction and weak fairness,” SPIN.

LNCS 2648, 2003,pp.89-103.

[16] E. Emerson, T. Wahl, “Dynamic symmetry reduction,” Proceedings of Tools and Algorithms for the Construction

and Analysis of Systems, LNCS 3440, 2005,pp.382-396.

[17] A. Miller, A. Donaldson, M. Calder, “Symmetry in temporal logic model checking,” ACM Computing Surveys,

2006, vol.38(3),pp.1-36.

[18] T. Wahl, “Adaptive symmetry reduction,” Proceedings of Computer Aided Verification(CAV’07). LNCS 4590,

2007,pp.393-405.

[19] J. Fernandez, M. Bozga, L. Ghirvu, “State space reduction based on live variables analysis,” Journal of Science of

Computer Programming(SCP), 2003, vol.47(2/3),pp.203-220.

[20] J. Self, E. Mercer, “On-the-fly dynamic dead variable analysis,” Proceedings of SPIN Workshop. LNCS 4595,

2007,pp.113-130.

[21] J. Hatcliff, M. Dwyer, H. Zheng, “Slicing software for model construction,” Higher order Symbol. Compute,

2000, vol.13(4),pp.315-353.

[22] M. Dwyer, J. Hatcliff, M. Hoosier, et al, “Evaluating the effectiveness of slicing for model reduction of concurrent

object oriented programs,” Proceedings of Tools and Algorithms for the Construction and Analysis of Systems.

LNCS 3920, 2006,pp.73-89.

[23] Li R, Lian H, Ma SL, Li T. Avionics System Testing Based on Formal Methods. Ruan Jian Xue Bao/Journal of

Software, 2015,26(2):186 (in Chinese with English abstract).

232

