
Case Study of ETL Java Code Generation from Domain Specific

Language

Sunisa Junsawang and Yachai Limpiyakorn

Department of Computer Engineering, Chulalongkorn University, Bangkok 10330, Thailand

Abstract. Extract-Transform-Load, ETL, is the integration layer in data warehouse environment. The

quality of ETL contributes to the accuracy and the correctness of data, it is expensive, though. This paper

aims to improve the process productivity and usability. A domain-specific language has been developed for

scripting ETL processes. Alternatively, the input of ETL scripts written by non-technical users in Excel

format is also allowed. The paradigm of code-to-code transformation is applied for transforming the textual,

domain-specific language into Java code. The etlDSL code generator is implemented with MVC architecture

design. A case study and the user evaluation of the proposed approach are also discussed. The overall rating

is satisfaction.

Keywords: domain specific language, ETL, query, data warehouse, software process improvement.

1. Introduction

In data warehouse environment, Extract-Transform-Load (ETL) processes constitute the integration layer

responsible for pulling data from data sources to targets, via a set of transformations. ETL is a critical

component contributes to the accuracy and the correctness of data, which are key factors of the success or

failure of data warehouse projects. However, building ETL processes consumes up to 70% of resources

regarding time, money and effort [1]. To improve the process productivity and usability, we develop a

domain-specific language (DSL) for scripting the ETL process. The prototyping code generator, etlDSL, is

implemented to support separation of concerns by means of Model-View-Controller (MVC) architecture

design as described in the earlier work [2]. In this paper, the Interface layer of the View component is

enhanced with the provision of Excel templates for user-defined ETL scripts to promote the usability. A case

study and the user evaluation of the proposed approach are also discussed.

In literature, Hemel et al. [3] presented a case study of the code generation by model transformation

approach applied in the development of WebDSL, which is a domain-specific language for dynamic web

applications. The WebDSL generator follows the four-level model organization to transform high-level

models into Java code and XML files. Oliveira and Belo [4] proposed the use of Business Process Modelling

Notation (BPMN) for building the simulator of ETL process. The DSL grammars were defined and

translated to Java language by Xtext tool. Deneke [5] developed the DSL by C# for building ETL workflows.

The Object-Relational Mapper (ORM) was used for data gathering instead of data query with SQL. Lasya

and Tanuku [6] proposed an approach to optimizing the executable code generated from a certain SQL query.

Several alternative query trees are constructed based on the relational algebra expressions underlying the

input SQL query. The Query Execution Plan associated with the query tree that provides the minimum cost

will be selected for executable code generation. Santos and Belo [7] proposed modelling ETL conciliation

tasks using relational algebra operators. Several scenarios of ETL were illustrated in relational algebra trees

for integrity awareness.

 Corresponding author. Tel.: + 668 2218 6959; fax: +668 2218 6955.

 E-mail address: Yachai.L@chula.ac.th.

219

ISBN 978-981-11-3671-9

Proceedings of 2017 the 7th International Workshop on Computer Science and Engineering

(WCSE 2017)

Beijing, 25-27 June, 2017, pp. 219 -223

admin
打字机文本
doi: 10.18178/wcse.2017.06.038

2. etlDSL

The DSL commands contain the common vocabularies familiar to the domain experts. In earlier work [2],

we described the development of a domain-specific language created for scripting ETL processes. The

current DSL presented in this paper has been slightly improved. Fig. 1 illustrates its meta-model which is a

grammar describing the valid sentences of the language. The etlDSL code generator is also implemented

providing alternative input of ETL scripts written by non-technical users, such as Business Analyst (BA).

The overview of the proposed ETL process is depicted in Fig. 2.

Fig. 1: DSL Meta-model.

Fig. 2: Proposed ETL Process.

Non-technical users can traditionally describe ETL processes in Excel files and then save to .etl

extension, i.e. automatically convert to DSL script. Alternatively, they can directly write the DSL scripts. As

shown in Fig. 3, the example ETL script contains Action delete and insert into the target table

CAMPAIGN_FACT with the updates. The data transformation is categorized into four types:

1) Constraint: e.g. move direct, null.

2) Function: e.g. nvl(), sum().

3) Number: e.g. 0, 1.

4) String: e.g. ‘USE’.

Response: ETL result

Execute Java ETL
Parse

Convert to DSL script

Input

Data Repository ETL Backend DSL for ETL Excel

: ETLMain

jobname
author

versions

description
element step

: delete

STEP NAME

ACTION

TARGET TABLE

CONDITION

: element step

 action = delete | insert | insert from file | update
.

: update

STEP NAME

ACTION

TARGET TABLE

CONDITION

: insert

STEP NAME

ACTION

TARGET TABLE

CONDITION

TARGET_FIELD

TARGET_KEY

DATA_TRANSFORMATION

SOURCE_TABLE

SOURCE_FIELD

: insert from file

STEP NAME

ACTION

TARGET TABLE

CONDITION

FILE NAME

TARGET_FIELD

TARGET_KEY

DATA_TRANSFORMATION

SOURCE_TABLE

SOURCE_FIELD

220

STEP NAME Delete CAMPAIGN

ACTION delete

TARGET TABLE CAMPAIGN_FACT
CONDITION (STORE,DT_KEY) in

(select l.STORE,l.DT_KEY

from campaign_fct c, STG_LOG l

where c.STORE = l.STORE

and c.DT_KEY = l.DT_KEY)

STEP NAME CAMPAIGN use_cards

ACTION insert

TARGET TABLE CAMPAIGN_FACT (update and insert)

CONDITION sale_attribute.saleheaderid = sales_header_fct.sale_id

and sales_header_fct.store = store_dim.store

and sale_attribute.att056 = '2'

group by sale_attribute.saleheaderid,

to_char(to_date(substr(sale_attribute.att040, 1, 10),'yyyy-mm-

dd'),'yyyymmdd'),

sales_header_fct.dt_key,
sales_header_fct.store,

store_dim.store_nm,

sales_header_fct.channel_sr_key,

sale_attribute.att039,sale_attribute.ATT054 ,sale_attribute.ATT055 ,

sale_attribute.ATT057)

TARGET_FIELD TARGET_KEY DATA_TRANSFORMATION SOURCE_TABLE SOURCE_FIELD

DT _KEY move direct sales_header_fct dt_key

CHANNEL_SR_KEY move direct sales_header_fct channel_sr_key

STORE key move direct sales_header_fct store

STORE_NM move direct store_dim store_nm

CARD_NUMBER key move direct sale_attribute att046

SALE_CARD_SALEID key move direct sale_attribute saleheaderid

USE_CARD_SALEID null

SALE_CARD_QTY 0

USE_CARD_QTY nvl(sum(att043),0)

TRUN_TYPE 'USE'

DATA_LOAD_DT sysdate

DATA_UPDT_DT sysdate

ATTR move direct sale_attribute ATT054

ATTR2 move direct sale_attribute ATT055

ATTR3 move direct sale_attribute ATT057

ATTR4 ' '

ATTR5 ' '

NUM_SALE_CARD_QTY 0

NUM_USE_CARD_QTY 1

Fig. 3: Example ETL Script in Excel File.

Next, Xtext, an open-source framework for developing programming languages and domain-specific

languages, is used as the parser generator. The DSL script will be parsed to Java code. Fig. 4 illustrates the

DSL script associated with the ETL Excel script shown in Fig. 3. The execution of Java code will then

invoke the ETL backend to create SQL statements using a set of predefined transformation rules, examples

as shown in Fig. 5. The generation of SQL statements in this work supports full outer join, inner join, left

join, and right join. Finally, the target model will be created by merging all the created target meta-models

with the predefined templates of standard Java commands and the log reporting the execution status.

221

Fig. 4: DSL Script Associated with ETL Excel File in Fig. 3.

Rule1: Delete

1.Get parameters from DSL (type, table name, condition)

2.If type equals ‘clear’ then truncate table target else get

target table name and condition to generate SQL delete

statement

3.Execute statement of (2)

Rule3: Update from database/ input value(s)

1.Get parameters from DSL (type, table name, condition)

2.Load mapping values to mapping table

3.Create SQL merge statement from mapping table

If type equals ‘update and insert’ then generate ‘when not

match then insert’ else does not generate ‘when not match

then insert’

4. Execute statement (3)

5. Clear data in mapping table

Rule2: Insert from file

1. Get parameters from DSL (type, table name, file name,

mapping values)

2. Load mapping values to mapping table

3. Create temporary table based on column of file

4. Load file to temporary table

5.Generate SQL statement from data in mapping table

6. If type equals ‘clear and insert’ then delete data in target

table and generate SQL insert statement on data in mapping

table else generate SQL insert statement on data in mapping

table

7.Execute statement of (6)

8.Drop temporary table and clear data in mapping table

Fig. 5: Example SQL Transformation Rules.

3. Evaluation

The satisfaction survey was conducted based on the quality dimensions including: Operability (users’

efforts for operation and operation control), Learnability (how well users can learn the application of

222

software), Correctness (if the ETL script functions correctly), Fitness for Use (if the system fulfills intended

use), and Overall Satisfaction. Six people who are project manager, business analysts, tester, programmer,

and QA were selected for writing the DSL script (Fig. 4). Table 1 summarizes the results reporting the

overall averaging score equals to 4.07 or achieving satisfaction ranking.

Table 1: Satisfaction Survey Results.

Score
Average Score

5 4 3 2 1

Operability 4 1 1 0 0 4.5

Learnability 1 4 1 0 0 4

Correctness 6 0 0 0 0 5

Fitness for Use 0 1 5 0 0 3.17

Overall Satisfaction 0 4 2 0 0 3.67

Overall Average 4.07

Notes: Ranks: 1-very unsatisfaction; 2-unsatisfaction; 3-neutral; 4-satisfaction; 5-very satisfaction.

4. Conclusion

To support ETL layer in data warehouse environment, this paper presents the development of etlDSL

generator to transform high-level abstractions into Java code. With Xtext framework, the proposed approach

can be also applied for the transformation to other languages, such as C#, .NET. This will require the

modification of ETL Backend to support word truncation in other programming languages. A case study of

ETL written in DSL is discussed and evaluated. The results showed that the users are satisfied with the

proposed approach. The etlDSL system could function the ETL process correctly. The users can learn and

operate the application software with not much effort. However, some user feedbacks suggest more pilot

studies on existing ETL processes should be conducted before widely used.

5. References

[1] A. Kabiri and D. Chiadmi, "SURVEY ON ETL PROCESSES," Journal of Theoretical and Applied Information

Technology, vol. 54, 2013.D. Ghosh, DSLs in Action: Manning Publications, 2011.

[2] S. Junsawang and Y. Limpiyakorn, "A Domain Specific Language for Scripting ETL Process," 2017.

[3] Z. Hemel, L. C. L. Kats, and E. Visser, "Code Generation by Model Transformation: A Case Study in

Transformation Modularity," 2008.

[4] B. Oliveira and O. Belo, "On the specification of extract, transform, and load patterns behavior: A domain‐

specific language approach," 2016.

[5] W. Deneke, "A Domain Specific Model for Generating ETL Workflows from Business Intents," Doctor of

Philosophy in Computer Science, University of Arkansas, Fayetteville, University of Arkansas, Fayetteville

ScholarWorks@UARK, 2012.

[6] S. Lasya and S. Tanuku, "A Study of Library Databases by Translating Those SQL Queries Into Relational

Algebra and Generating Query Trees," 2011.

[7] V. Santos and O. Belo, "Modelling ETL Conciliation Tasks Using Relational Algebra Operators," presented at the

2014 UKSim-AMSS 8th European Modelling Symposium, 2014.

223

