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Abstract. In recent years, many websites and applications allow users to find objects which match with all 

of the query keywords and are close to a specified location. Tao et. al. propose a data access structure called 

the SI-index which integrates the inverted index with R-tree. However, it takes a long time for dealing with 

data of objects and some extra time for data decompression. Therefore, in this paper, we propose a KSNA-

tree algorithm. The KSNA-tree integrates a spatial index NA-tree with inverted index. The contributions of 

our approach are as follows. First, our approach only construct one KSNA-tree, instead of building n R-trees 

for n keywords in the database. Second, we organize the data of objects according to their spatial number. 

This will avoid random access in the query processing by directly accessing the spatial number of a node. 

Third, we enhance each node in the KSNA-tree with the inverted index. We can prune a node and all of its 

child nodes immediately once we know that one of the query keywords is definitely not in the node. From 

our simulation results, we show that our proposed approach is more efficient than the SI-index. 
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1. Introduction 

The geographic information system (GIS) is now widely used in positioning and finding objects. Many 

websites and applications require the abilities to find objects in a region or close to a specified location. An 

object in spatial database consists of two parts: (1) spatial information and (2) textual information. For 

instance, a user wants to find the 'Snoopy hotel' near Kaohsiung city. The 'Snoopy hotel' has two keywords in 

the keyword set and Kaohsiung city is the specified area. In this case, the top-k spatial keyword query aims at 

finding the objects that match with all keywords and are close to a specified location [1]. Tao et. al. propose 

a data access structure called the SI-index which integrates the inverted index with R-tree [2]. They use data 

compression approaches, gap-keeping and Z-value [3], for reducing the size of the SI-index. However, there 

are problems in their data structure. First, a large number of R-trees are built for storing data of objects. For n 

keywords, n R-trees must be constructed. It takes long time for dealing with data of objects and some extra 

time for data decompression. When data objects are updated/deleted/queried, their algorithm must traverse 

all the R-trees of the query keywords. Second, they partition the space to construct the spatial index. This 

will result in random access in the query processing. Third, there is no principle to decide which algorithm of 

SI-index would be applied to answer the top-k spatial keyword query under an unpredictable dataset. 

Therefore, in this paper, we propose the Keyword-Search-Nine-Area-tree (KSNA-tree) algorithm to process 

the top-k spatial keyword query. As compared to SI-index, we have only one KSNA-tree for all of the 

keywords. The rest of the thesis is organized as follows. Section 2 gives a survey of some methods for top-k 

spatial keyword query from the spatial databases. Section 3 presents the proposed algorithm. Section 4, we 

study the performance. Finally, we give a conclusion. 
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2. Related Work 

To deal with the spatial keyword query processing, there are two primary issues: spatial index structure 

and keyword matching methods. Querying a spatial database is not like querying in relational databases. 

There is no total ordering of objects in spatial objects, so the traditional access methods used in relational 

databases cannot be directly apply to spatial databases [4]. The problem of top-k spatial keyword query is to 

find objects which match with all of the keywords and are close to a specified location. The straightforward 

way is to fetch all the objects which match with all of the keywords first and then browses all matched 

objects in ascending order of their distances to the query point q. But this may cost too much time. Therefore, 

Felipe et. al. proposed the IR
2
-tree integrating R-tree with the signature file [1]. The R-tree partitions objects 

into regions (blocks), and signature file is directly embedded in those blocks. Zhang et. al. proposed the IL-

Quadtree integrating inverted index with the quadtree [5]. The quadtree recursively partitions objects into 

four regions, and inverted index stores those points and regions which the keyword appears. On the other 

hand, Tao et. al. proposed the SI-index integrating inverted index with R-tree [2]. Differently from the IL-

Quadtree, they provide two query processing algorithms: (1) SI-b algorithm and (2) SI-m algorithm. The SI-b 

algorithm performs queries by browsing the R-trees and the SI-m algorithm performs queries by directly 

merging the inverted index. These algorithms mentioned above focus on the problem of finding k-nearest 

neighbors and each of these k objects must contain the query keywords. Though some users may not know 

how to exactly spell the keyword, there are solutions like LBAK-tree [6] and NAAK-tree [7] to solve the 

approximate keyword queries problem. 

3. The Keyword-Search-Nine-Area-tree Approach 

In this section, we propose a Keyword-Search-Nine-Area-tree (KSNA-tree) as the spatial index, and use 

the inverted index as the keyword matching approach. The KSNA-tree augments a tree-based spatial index 

NA-tree [8] with abilities for k-nearest neighbors search and keyword matching. In spatial databases, objects 

could be the point data or the region data. Therefore, we use the NA-tree which proposed by Chang et. al. [8] 

to index the spatial objects. The NA-tree costs lower than R-tree series index structure [9] [10] in query 

processing. Moreover, the NA-tree can deal with point data and region data [8]. 

3.1. The KSNA index structure 

A spatial object can be a polygon, a rectangle, or other shapes. There is a common way to characterize 

the spatial object by using the Minimum Boundary Rectangle (MBR). The MBR is oriented parallel to the 

coordinate axes X and Y. As Figure 1-(a) shown, L is the lower left coordinate and U is the upper right 

coordinate of the object. They represent an object as O(L, U). In NA-tree [8], a non-leaf node can have nine, 

four, or two child nodes. On the other hand, the data of objects can only be stored in the external node. 

Figure 1-(b) shows the spatial database SD1 and the corresponding NA-tree structure is shown in Figure 2. 

The bucket_capacity denotes the maximum number of entries which can be stored in the leaf node. 

                                  
(a)                                                                         (b) 

Fig. 1: Explain of the spatial object: (a) an object representation: O(L,U ); (b) the spatial database SD1. 

  
Fig. 2: The tree structure of the spatial database SD1 (bucket_capacity = 2) 
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Tao et. al. proposed the SI-index which combines the R-tree with the inverted index. For each keyword 

in the database, they both create a corresponding tree for storing objects which the keyword appears. They 

have a large number of trees for storing information of objects. It takes a long time for maintaining data and 

query processing. To solve this problem, we propose the KSNA index which combines an NA-tree with the 

inverted index. We locate spatial objects according to the spatial number, instead of partitioning the spatial 

space. Moreover, we enhance every node of KSNA-tree with inverted index. Once a keyword w does not 

match with a node N, no keyword of any child of node N will match with keyword w. Figure 3-(a) shows an 

example of the spatial objects and the corresponding KSNA-tree is shown in Figure 3-(b). Each non-leaf 

node stores the range of the spatial number and the inverted index of region. For instance, N6 is a non-leaf 

node and the inverted index of node N6 shows that node N11 and node N12 have the keyword B. On the other 

hand, each leaf node stores the geometric properties and the inverted index of objects. For instance, objects 

P6 and P8 are stored in the node N11 and the inverted index of the leaf node shows that only object P6 has the 

keyword B. 

  
(a)                                                                                              (b) 

Fig. 3: Example: (a) a spatial dataset SD2; (b) the corresponding KSNA-tree for spatial dataset SD2. 

3.2. Top-k spatial keyword query processing 

We propose procedure NA_Tree_TopK to process the top-k spatial keyword queries. Figure 4-(a) shows 

our algorithm for processing top-k spatial keyword queries using the KSNA-tree. In query processing, a 

query point Q consists of two attributes: (1) the coordination CQ and (2) the textual condition TC. Procedure 

NA_Tree_NN is shown in Figure 4-(b). In procedure NA_Tree_NN, we repeatedly assign an element which is 

dequeued from the priority queue PQ to the next nearest object NNO and assign the distance which between 

the query point Q and the next nearest object NNO to the distance between query point and node (object) 

DQN. An example for the comparison between our proposed KSNA algorithm and two algorithms of SI-

index: SI-b and SI-m is described as follows. In spatial dataset SD2, we want to find the top-1 nearest 

neighbor of the query point q(6,8) with keywords {B, C}. In the SI-b algorithm and the SI-m algorithm, they 

both construct 4 R-trees and have 20 nodes. Our KSNA algorithm only constructs 1 KSNA-tree and has 16 

nodes. In the SI-b algorithm, the number of candidate nodes is 10, and the number of candidate objects is 8. 

On the other hand, in the SI-m algorithm, the number of candidate nodes is 6 and the number of candidate 

objects is 8. However, in our KSNA algorithm, the number of candidate nodes is 4 and the number of 

candidate object is 1. Therefore, our KSNA algorithm has better performance in terms of the processing time. 

We discuss the differences between our proposed KSNA-tree and the SI-index which is proposed by Tao et. 

al. First of all, the data structure for storing data is different. The SI-index uses R-tree for storing objects. 

The node of R-tree will be split into two nodes once the number of objects in the node reaches the capacity 

of node. Instead, we organize the data objects according to their spatial number. This will avoid random 

access in the query processing by directly accessing the spatial number of a node. Second, the number of 

trees is different. In SI-index, they build an R-tree and an inverted index for every keyword in the database. 
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As compared to SI-index, we have only one KSNA-tree for all keywords. In query processing, SI-index have 

to traverse more trees while the number of query keywords |Wq| increases. In data maintaining processing, 

SI-index must traverse many trees to update or delete data of objects. Third, we apply inverted index in 

different way. Both of KSNA-tree and SI-index use inverted index for keyword matching. The result of 

query processing will be the intersection of all inverted indexes of query keywords. Besides, we enhance 

each node in the KSNA-tree with inverted index. Once we know that one of the query keywords is definitely 

not in the node, we can prune the node and the all child nodes of it immediately. 

    
(a)                                                                                   (b) 

Fig. 4: Procedure: (a) NA_Tree_TopK; (b) NA_Tree_NN. 

4. Performance 

In this section, we study the performance of the top-k spatial keyword query processing using the SI-

index and the KSNA-tree. In the database, there are 100000 objects and 500 different keywords. The 

dimensionality is 2 and each axis consisting of integers from 0 to 10000 [2]. The average number of 

keywords in each object is 100. The average number of objects for each keyword is 20000. The synthetic 

database has two kinds of data distribution: (1) Uniform and (2) Skew. These two datasets are different in the 

distribution of objects. In the dataset Uniform, the locations of objects are uniformly distributed. Each object 

is randomly assigned with one hundred keywords. On the other hand, in the dataset Skew, the data space is 

partitioned into N zones according to the Z-value of zone. The number of objects in each zone is decided 

based on the Zipf distribution [2]. Figure 5-(a) and Figure 5-(b) shows the comparison of the processing time 

of the dataset Uniform and Skew under the different size of query keyword |Wq|, respectively.  

 
(a)                                                                                               (b) 

Fig. 5: A comparison of the processing time (sec) under the different size of query keyword |Wq| (a) the dataset 

Uniform; (b) the dataset Skew. 
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In the dataset Uniform, the size of query keyword |Wq| is changed from 2 to 10. Since the times of 

random access which the SI-b algorithm performs increase while the size of query keyword |Wq| increases, 

the processing time of the SI-b algorithm increases dramatically. However, the KSNA algorithm uses the 

inverted index of nodes for pruning, the nodes which are pruned increase while the size of query keyword 

|Wq| increases. Hence, the KSNA algorithm always outperform the SI-m algorithm. In the dataset Skew, the 

distribution of objects follows the Zipf distribution [2] and there are correlations between the keywords of 

objects. Hence, it is difficult to reduce the size of intersection of all inverted indexes for the SI-m algorithm. 

The KSNA algorithm always outperform the SI-m algorithm. 

5. Conclusions 

In this paper, we have proposed a KSNA-tree approach which can efficiently answer the top-k spatial 

keyword query. Our approach only constructs one KSNA-tree, instead of building n R-trees for n keywords 

in the database. Moreover, we have studied the processing time of our KSNA algorithm and two algorithms 

of SI-index: SI-b and SI-m. From our simulation results, we show that our approach is more efficient than the 

SI-index.  
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