
A KSNA-Tree Algorithm for the Top-k Exact Keyword Search in

Spatial Databases

Ye-In Chang
1
, Chia-En Li

2
and Kai-Ning Yang

3

Department of Computer Science and Engineering National Sun Yat-sen University

Kaohsiung, Taiwan, Republic of China

Abstract. In recent years, many websites and applications allow users to find objects which match with all

of the query keywords and are close to a specified location. Tao et. al. propose a data access structure called

the SI-index which integrates the inverted index with R-tree. However, it takes a long time for dealing with

data of objects and some extra time for data decompression. Therefore, in this paper, we propose a KSNA-

tree algorithm. The KSNA-tree integrates a spatial index NA-tree with inverted index. The contributions of

our approach are as follows. First, our approach only construct one KSNA-tree, instead of building n R-trees

for n keywords in the database. Second, we organize the data of objects according to their spatial number.

This will avoid random access in the query processing by directly accessing the spatial number of a node.

Third, we enhance each node in the KSNA-tree with the inverted index. We can prune a node and all of its

child nodes immediately once we know that one of the query keywords is definitely not in the node. From

our simulation results, we show that our proposed approach is more efficient than the SI-index.

Keywords: data mining, inverted index, keyword matching, spatial index structure, spatial database, top-k

1. Introduction

The geographic information system (GIS) is now widely used in positioning and finding objects. Many

websites and applications require the abilities to find objects in a region or close to a specified location. An

object in spatial database consists of two parts: (1) spatial information and (2) textual information. For

instance, a user wants to find the 'Snoopy hotel' near Kaohsiung city. The 'Snoopy hotel' has two keywords in

the keyword set and Kaohsiung city is the specified area. In this case, the top-k spatial keyword query aims at

finding the objects that match with all keywords and are close to a specified location [1]. Tao et. al. propose

a data access structure called the SI-index which integrates the inverted index with R-tree [2]. They use data

compression approaches, gap-keeping and Z-value [3], for reducing the size of the SI-index. However, there

are problems in their data structure. First, a large number of R-trees are built for storing data of objects. For n

keywords, n R-trees must be constructed. It takes long time for dealing with data of objects and some extra

time for data decompression. When data objects are updated/deleted/queried, their algorithm must traverse

all the R-trees of the query keywords. Second, they partition the space to construct the spatial index. This

will result in random access in the query processing. Third, there is no principle to decide which algorithm of

SI-index would be applied to answer the top-k spatial keyword query under an unpredictable dataset.

Therefore, in this paper, we propose the Keyword-Search-Nine-Area-tree (KSNA-tree) algorithm to process

the top-k spatial keyword query. As compared to SI-index, we have only one KSNA-tree for all of the

keywords. The rest of the thesis is organized as follows. Section 2 gives a survey of some methods for top-k

spatial keyword query from the spatial databases. Section 3 presents the proposed algorithm. Section 4, we

study the performance. Finally, we give a conclusion.

 Corresponding author. Tel.: +886-7-5254350.

 E-mail address: lice@db.cse.nsysu.edu.tw.

166

ISBN 978-981-11-3671-9

Proceedings of 2017 the 7th International Workshop on Computer Science and Engineering

(WCSE 2017)

Beijing, 25-27 June, 2017, pp. 166-170

admin
打字机文本
doi: 10.18178/wcse.2017.06.029

2. Related Work

To deal with the spatial keyword query processing, there are two primary issues: spatial index structure

and keyword matching methods. Querying a spatial database is not like querying in relational databases.

There is no total ordering of objects in spatial objects, so the traditional access methods used in relational

databases cannot be directly apply to spatial databases [4]. The problem of top-k spatial keyword query is to

find objects which match with all of the keywords and are close to a specified location. The straightforward

way is to fetch all the objects which match with all of the keywords first and then browses all matched

objects in ascending order of their distances to the query point q. But this may cost too much time. Therefore,

Felipe et. al. proposed the IR
2
-tree integrating R-tree with the signature file [1]. The R-tree partitions objects

into regions (blocks), and signature file is directly embedded in those blocks. Zhang et. al. proposed the IL-

Quadtree integrating inverted index with the quadtree [5]. The quadtree recursively partitions objects into

four regions, and inverted index stores those points and regions which the keyword appears. On the other

hand, Tao et. al. proposed the SI-index integrating inverted index with R-tree [2]. Differently from the IL-

Quadtree, they provide two query processing algorithms: (1) SI-b algorithm and (2) SI-m algorithm. The SI-b

algorithm performs queries by browsing the R-trees and the SI-m algorithm performs queries by directly

merging the inverted index. These algorithms mentioned above focus on the problem of finding k-nearest

neighbors and each of these k objects must contain the query keywords. Though some users may not know

how to exactly spell the keyword, there are solutions like LBAK-tree [6] and NAAK-tree [7] to solve the

approximate keyword queries problem.

3. The Keyword-Search-Nine-Area-tree Approach

In this section, we propose a Keyword-Search-Nine-Area-tree (KSNA-tree) as the spatial index, and use

the inverted index as the keyword matching approach. The KSNA-tree augments a tree-based spatial index

NA-tree [8] with abilities for k-nearest neighbors search and keyword matching. In spatial databases, objects

could be the point data or the region data. Therefore, we use the NA-tree which proposed by Chang et. al. [8]

to index the spatial objects. The NA-tree costs lower than R-tree series index structure [9] [10] in query

processing. Moreover, the NA-tree can deal with point data and region data [8].

3.1. The KSNA index structure

A spatial object can be a polygon, a rectangle, or other shapes. There is a common way to characterize

the spatial object by using the Minimum Boundary Rectangle (MBR). The MBR is oriented parallel to the

coordinate axes X and Y. As Figure 1-(a) shown, L is the lower left coordinate and U is the upper right

coordinate of the object. They represent an object as O(L, U). In NA-tree [8], a non-leaf node can have nine,

four, or two child nodes. On the other hand, the data of objects can only be stored in the external node.

Figure 1-(b) shows the spatial database SD1 and the corresponding NA-tree structure is shown in Figure 2.

The bucket_capacity denotes the maximum number of entries which can be stored in the leaf node.

(a) (b)

Fig. 1: Explain of the spatial object: (a) an object representation: O(L,U); (b) the spatial database SD1.

Fig. 2: The tree structure of the spatial database SD1 (bucket_capacity = 2)

167

Tao et. al. proposed the SI-index which combines the R-tree with the inverted index. For each keyword

in the database, they both create a corresponding tree for storing objects which the keyword appears. They

have a large number of trees for storing information of objects. It takes a long time for maintaining data and

query processing. To solve this problem, we propose the KSNA index which combines an NA-tree with the

inverted index. We locate spatial objects according to the spatial number, instead of partitioning the spatial

space. Moreover, we enhance every node of KSNA-tree with inverted index. Once a keyword w does not

match with a node N, no keyword of any child of node N will match with keyword w. Figure 3-(a) shows an

example of the spatial objects and the corresponding KSNA-tree is shown in Figure 3-(b). Each non-leaf

node stores the range of the spatial number and the inverted index of region. For instance, N6 is a non-leaf

node and the inverted index of node N6 shows that node N11 and node N12 have the keyword B. On the other

hand, each leaf node stores the geometric properties and the inverted index of objects. For instance, objects

P6 and P8 are stored in the node N11 and the inverted index of the leaf node shows that only object P6 has the

keyword B.

(a) (b)

Fig. 3: Example: (a) a spatial dataset SD2; (b) the corresponding KSNA-tree for spatial dataset SD2.

3.2. Top-k spatial keyword query processing

We propose procedure NA_Tree_TopK to process the top-k spatial keyword queries. Figure 4-(a) shows

our algorithm for processing top-k spatial keyword queries using the KSNA-tree. In query processing, a

query point Q consists of two attributes: (1) the coordination CQ and (2) the textual condition TC. Procedure

NA_Tree_NN is shown in Figure 4-(b). In procedure NA_Tree_NN, we repeatedly assign an element which is

dequeued from the priority queue PQ to the next nearest object NNO and assign the distance which between

the query point Q and the next nearest object NNO to the distance between query point and node (object)

DQN. An example for the comparison between our proposed KSNA algorithm and two algorithms of SI-

index: SI-b and SI-m is described as follows. In spatial dataset SD2, we want to find the top-1 nearest

neighbor of the query point q(6,8) with keywords {B, C}. In the SI-b algorithm and the SI-m algorithm, they

both construct 4 R-trees and have 20 nodes. Our KSNA algorithm only constructs 1 KSNA-tree and has 16

nodes. In the SI-b algorithm, the number of candidate nodes is 10, and the number of candidate objects is 8.

On the other hand, in the SI-m algorithm, the number of candidate nodes is 6 and the number of candidate

objects is 8. However, in our KSNA algorithm, the number of candidate nodes is 4 and the number of

candidate object is 1. Therefore, our KSNA algorithm has better performance in terms of the processing time.

We discuss the differences between our proposed KSNA-tree and the SI-index which is proposed by Tao et.

al. First of all, the data structure for storing data is different. The SI-index uses R-tree for storing objects.

The node of R-tree will be split into two nodes once the number of objects in the node reaches the capacity

of node. Instead, we organize the data objects according to their spatial number. This will avoid random

access in the query processing by directly accessing the spatial number of a node. Second, the number of

trees is different. In SI-index, they build an R-tree and an inverted index for every keyword in the database.

168

As compared to SI-index, we have only one KSNA-tree for all keywords. In query processing, SI-index have

to traverse more trees while the number of query keywords |Wq| increases. In data maintaining processing,

SI-index must traverse many trees to update or delete data of objects. Third, we apply inverted index in

different way. Both of KSNA-tree and SI-index use inverted index for keyword matching. The result of

query processing will be the intersection of all inverted indexes of query keywords. Besides, we enhance

each node in the KSNA-tree with inverted index. Once we know that one of the query keywords is definitely

not in the node, we can prune the node and the all child nodes of it immediately.

(a) (b)

Fig. 4: Procedure: (a) NA_Tree_TopK; (b) NA_Tree_NN.

4. Performance

In this section, we study the performance of the top-k spatial keyword query processing using the SI-

index and the KSNA-tree. In the database, there are 100000 objects and 500 different keywords. The

dimensionality is 2 and each axis consisting of integers from 0 to 10000 [2]. The average number of

keywords in each object is 100. The average number of objects for each keyword is 20000. The synthetic

database has two kinds of data distribution: (1) Uniform and (2) Skew. These two datasets are different in the

distribution of objects. In the dataset Uniform, the locations of objects are uniformly distributed. Each object

is randomly assigned with one hundred keywords. On the other hand, in the dataset Skew, the data space is

partitioned into N zones according to the Z-value of zone. The number of objects in each zone is decided

based on the Zipf distribution [2]. Figure 5-(a) and Figure 5-(b) shows the comparison of the processing time

of the dataset Uniform and Skew under the different size of query keyword |Wq|, respectively.

(a) (b)

Fig. 5: A comparison of the processing time (sec) under the different size of query keyword |Wq| (a) the dataset

Uniform; (b) the dataset Skew.

169

In the dataset Uniform, the size of query keyword |Wq| is changed from 2 to 10. Since the times of

random access which the SI-b algorithm performs increase while the size of query keyword |Wq| increases,

the processing time of the SI-b algorithm increases dramatically. However, the KSNA algorithm uses the

inverted index of nodes for pruning, the nodes which are pruned increase while the size of query keyword

|Wq| increases. Hence, the KSNA algorithm always outperform the SI-m algorithm. In the dataset Skew, the

distribution of objects follows the Zipf distribution [2] and there are correlations between the keywords of

objects. Hence, it is difficult to reduce the size of intersection of all inverted indexes for the SI-m algorithm.

The KSNA algorithm always outperform the SI-m algorithm.

5. Conclusions

In this paper, we have proposed a KSNA-tree approach which can efficiently answer the top-k spatial

keyword query. Our approach only constructs one KSNA-tree, instead of building n R-trees for n keywords

in the database. Moreover, we have studied the processing time of our KSNA algorithm and two algorithms

of SI-index: SI-b and SI-m. From our simulation results, we show that our approach is more efficient than the

SI-index.

6. Acknowledgements

This research was supported in part by the Ministry of Science and Technology of Republic of China

under Grant No. MOST-105-2221-E-110-084.

7. References

[1] I. De Felipe, V. Hristidis, and N. Rishe. Keyword Search on Spatial Databases. Proc. of the 24th IEEE

International Conference on Data Engineering. 2008, pp. 656-665.

[2] Y. Tao, and C. Sheng. Fast nearest neighbor search with keywords. IEEE Trans. on Knowl. and Data Eng. 2014,

26(4): 878-888.

[3] M. Bern, D. Eppstein, and S. H. Teng. Parallel construction of quadtrees and quality triangulations. Int. J. of

Comput. Geom. and Appl. 1999, 9(6): 517-532.

[4] B. Moon, H. Jagadish, C. Faloutsos, and J. Saltz. Analysis of the clustering properties of the hilbert space-filling

curve. IEEE Trans. on Knowl. and Data Eng. 2001, 13(1): 124-141.

[5] C. Zhang, Y. Zhang, W. Zhang, and X. Lin. Inverted Linear Quadtree: Efficient Top K Spatial Keyword Search.

Proc. of the 29th IEEE International Conference on Data Engineering. 2013, pp. 901-912.

[6] S. Alsubaiee, A. Behm, and C. Li. Supporting Location-Based Approximate-Keyword Queries. Proc. of the 18th

SIGSPATIAL International Conference on Advances in Geographic Information Systems. 2010, pp. 61-70.

[7] Y. I. Chang, Z. S. Chen, and Y. G. Liou. NAAK-Tree: An Index for Querying Spatial Approximate Keywords.

Proc. of the 2013 National Computer Symposium. 2013, pp. 1-6.

[8] Y. I. Chang, C. H. Liao, and H. L. Chen. NA-Trees: A dynamic index for spatial data. J. of Inf. Sci. and Eng. 2003,

19(1): 103-139.

[9] A. Guttman. R-trees: A Dynamic Index Structure for Spatial Searching. Proc. of the 1984 ACM SIGMOD

International Conference on Management of Data. 1984, pp. 47-57.

[10] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An Efficient and Robust Access Method

for Points and Rectangles. Proc. of the 1990 ACM SIGMOD International Conference on Management of Data.

1990, pp. 322-331.

170

