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Abstract. This paper addresses the computational problem of Joint Probability Data Association (JPDA) 

filter in multitarget tracking with dense clutter. A parallelization implementation for JPDA on graphics 

processing unit (GPU) platform under the Compute Unified Device Architecture (CUDA) framework is 

presented. Where the JPDA filter is resolved into two parts in the view of computation. Specific 

parallelization scheme is designed for each part. Simulation results show that with the assistance of GPU, 

JPDA achieves up to a 55x speedup than its CPU implementation under dense clutter, while maintains the 

same computational accuracy to CPU method. 
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1. Introduction 

The JPDA filter [1] is a widely used algorithm in the multitarget tracking along with miss detections and 

clutters. Whereas JPDA has the defect that the exact calculation of association probabilities is not attainable 

in real-time along with the growth of number of targets and measurements. To alleviate its computational 

complexity, some suboptimal association algorithms were attempted, e.g. NN-JPDA [3], and suboptimal-

JPDA [4, 5]. The hallmarks of suboptimal algorithms are that they sacrificed the tracking accuracy to reach 

the real-time goal. To reconcile the contradiction between the accuracy and the computation complexity, [6, 

7] has addressed the data association problems of multitarget tracking on the multi-core processor, but just 

considering the sparse clutter circumstance. 

This paper is to propose a parallelization scheme for JPDA in multitarget tracking on GPU based on 

CUDA framework [8,9,10,11]. In the state estimation, we propose to renew all the targets states in parallel; 

In the data association, we propose to save all the possible cases of joint association events in global memory, 

and evaluate all matches in parallel. The results in the simulated scenario with dense clutter demonstrate that 

the proposed scheme has achieved a great speedup on GPU compared with the CPU implementation, but 

without any accuracy loss. 

The reminder of this paper is structured as follows: A roughly introduction to JPDA is illustrated in 

Section 2. The details of our proposal are illustrated in Section 3. Simulation results and some analysis are 

exhibited in Section 4. At last, conclusions and expectation of conceivable work in future are in Section 5. 

2.  Introduction to JPDA 

Assuming that T  targets are moving in the surveillance area, by given kinematic model tF , state vectors 

1

t

kx  , covariance matrix 1

t

kP   and observations  , 1,...,i

k k kZ z i m  , four steps are carried out to estimate the 

target states [1]: 

 Step 1: State Prediction: 
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For t = 1,...,T , compute 
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where , ,t t tF G Q  are dynamic function parameters and ,H R  are observation function parameters. 

 Step 2: Measurement Validation 

The validation matrix is denoted as 
jt     , 1,..., kj m , 0,1,...,t T , where jt  is declared 1 if and 

only if 

     
1'
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where   is a properly chosen threshold. 

 Step 3: Association Probabilities. 

The conditional probability of     
1

k

i i
k k


 


  is given in (6), where c  is the normalizing factor,   is 

the number of clutter along a target, V  is the volume of the validation gate. j  equals to 1 if j th 

measurement is assigned to a track and 0 otherwise. 
t  is a binary variable to indicate whether target t  is 

associated with a measurement in  i k . t

DP  is the detection probability of target t . Finally,  jt k  is 

calculated by (7), where  jt i k     is a binary variable indicating whether target t  is associated with 

measurement j  in  i k . 
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 Step 4: State Updating 

For t = 1,...,T  and 1 kj = ,...,m , compute: 

  1

t k t

k j k k
v j z H x


                                                                                                                                           (8) 

   
1

km
t t

k jt k

j

v k v j


                                                                                                                                        (9) 

1

t t t t

k k kk k
x x K v


                                                                                                                                             (10) 

   

     

    

'

1
1

'

1

' '

k

k

m
t t t t t

k jt k k kk k
j

m
t t t

k jt k k

j

t t t

k k k

P P k K S K

K k v j v j

v v K










 
    

 


      



  



                                                                                                                        (11) 

In above routine, the execution of (6), (7) takes the majority workload of JPDA, which grows 

exponentially in multitarget tracking scenario with dense clutters. More details discussion about the 

computational complexity of JPDA can be found in [12]. 

3. Parallelization of JPDA 

JPDA can be resolved into two steps in the term of parallelization: state estimation and data association. 

The former is com-posed by step 1, 4, while the latter is composed by step 2, 3. 

3.1. Parallelization of state estimation 

Note that states of T  targets are renewed with no correlation, as in Fig. 1. By considering the 

computational characteristic of state estimation, we propose a scheme to carry out each KF is executed 
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serially by a thread. The parallelization scheme can reduce the circulation to only one, which means that a 

xT  speedup can be obtained in theory.  
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Fig. 1: Computation framework of state estimation. 

3.2. Parallelization of data association 

For building the validation matrix 
jt     , 

km T  threads can be employed directly to examine 

whether measurement j  falls into validation gate of target t  by (5), while listing all the joint association 

events can not be fully parallelized since it is the permutation and combination problem [2]. We propose to 

compute all possible cases offline and save them in the global memory. For the convenience of GPU to 

access the data, we propose to compress the joint association event matrix into the association vector: 

   I , 1,..., , I 0, , , 1,...,k k

i t t k kk t T m i                                                                                                        (12) 

The dimension of each vector is 1 T , Ik

t  indicates target t  is associated with measurement Ik

t , I 0k

t   

indicates target t  is associated with no measurement, which means that target t  is undetected in  i k . 

Elements in  i k  can be used as the index to compute  i kp k Z 
  . Thus, (6) can be re-written as (13) and 

(14). Additionally, we employ the Parallel Prefix Sum (PPS) [13] to compute c  in (6), which brings 

logarithmic decrease of execution times. 

To compute  jt k  in (7), we re-project  i k  back to  i k  in parallel firstly. If the execution time of a 

summation is pT , by employing PPS  1km t   times, the execution time of (7) is    2log 1k k pm t T      

on GPU. 
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4. Simulations 

4.1. Simulation environment 

In this simulations, JPDA filter are carried out on GPU and CPU respectively. The hardware and 

software resources are illustrated in Table 1. 

TABLE 1: SIMULATION ENVIRONMENT 

 CPU GPU 

Hardware 
Intel(R) Core(TM) i5-4430 @ 3.00GHz, 16.0GB 

RAM 

NVIDIA GeForce GTX 760 @ 1.10GHz, 2.0GB 

RAM 

Software Matlab R2013a        64-bit version Visual Studio 2010 CUDA Toolkit v6.0 

4.2. Simulation scenario 

Assume 3 targets move in monitor are and they follow a constant velocity motion model for 50 sampling 

times. The kinematic model tF , initial state covariance matrix tP , noise gain matrix tG  and noise 
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covariance matrix tQ  are the same and given in (15)-(16). Measurements are sampled with the interval 1sT  , 

based on a single sensor. The observation matrix H  and the covariance matrix of which is given in (17). 

Assuming that there is no missing detection. The threshold of the confirm gate is 9.21  . 
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4.3. Accuracy comparison 

The performances of JPDA are examined on GPU and CPU with the expected clutter number along a 

target 5  . We employ the mean RMMSE of the target positions as an indicator. The results under 200 

independently simulations per platform are illustrated in Fig. 2. As the result, the implementation of JPDA 

on the GPU has the same level of accuracy with that on the CPU. 
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Fig. 2: Mean RMMSE of 3 targets on GPU and CPU. 
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Fig. 3: Execution time of JPDA and the speedup on GPU 

versus CPU. 

4.4. The speedup of GPU to CPU 

To examine the speedup ratio between two platforms in situations, we artificially manipulate the clutter 

number along each target to 1,5,10,15,20,25  . The speedup of GPU versus CPU is illustrated in Fig. 3. As 

the result, the execution time on GPU increases slightly when clutter density rises, since the state estimation 

and data association are implemented in parallel. The extra time is spent on data exchanges between host and 

device. While the implementation on CPU has to face the NP-Hard problem and results an unacceptable time 

cost. 

5. Conclusions 

In this paper, we solved the computational problem of JPDA by implementing it with the assistance of 

GPU. The proposed scheme took full advantage of the parallel feature of GPU to compute multiple 

parallelized operations in the state estimation and joint association events probability in the data association 
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of JPDA. The proposed scheme is examined through a simulated scenario with dense clutter on a specified 

GPU. A 55x speedup is obtained with 25 clutters along each target. It exhibits that the JPDA filter can be 

real-time implemented in the dense clutter scenario by employing GPU. The future work will focus on 

extending the parallelization scheme to other association based multitarget tracking algorithms, and their ma-

neuvering tracking versions. 
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