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Abstract. The subspace data fusion direct position determination method is unable to locate coherent 

signals, and suffers location accuracy loss and source resolution degradation under scenarios of low SNR, 

snapshot deficiency. A sparse reconstruction direct position determination method based on temporal 

information fusion is proposed to overcome the above-mentioned shortcomings. Firstly, the sparse 

representation direct position determination model is established based on the sparsity of signal distribution. 

Then the multi-snapshot reconstruction method is developed based on the idea of temporal information 

fusion. Finally, the signal source positions are estimated according to one-to-one correspondence between the 

sparse vector and signal geographic-grid locations. The simulations indicate that the proposed method is able 

to locate coherent signals and outperforms subspace data fusion method in terms of location accuracy and 

source resolution. 
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1. Introduction  

The most common methods for position determination of radio signal emitters in passive location system 

are based on two-step processing. Firstly, specified parameters such as time of arrival (TOA) or direction of 

arrival (DOA) are estimated from received source signals. Next, equations of LOP including former 

estimated parameters are established to determine the locations of signal transmitters [1, 2]. The two-step 

methods separate parameter estimation and position calculation, leading to position information loss and 

parameter-location mismatch. Therefore, these methods are sub-optimal. Direct position determination (DPD) 

method estimates the source positions directly from raw outputs without computing intermediate parameters. 

They avoids location information loss and can gain higher location accuracy [3-6]. 

There are three kinds of methods to solve the direct position determination: Maximum Likelihood 

methods (ML) [7-10], intelligent optimization methods [11] and Subspace Data Fusion (SDF) methods [12, 

13]. Weiss A. J. firstly proposed the single-target direct position determination method based on the ML 

criterion [7]. However, ML-DPD methods require a multidimensional search in the presence of multiple 

transmitters with huge computation. Oispuu M and Nickel U transformed the multidimensional search into 

several low dimensional search by alternating projection to reduce computation [9]. While location accuracy 

is susceptible to initial value selection. Quantum behaved Particle Swarm Optimization DPD (QPSO-DPD) 

was proposed in [11] to reduce computation significantly. However, selecting the control parameters 

difficultly increases the possibility of trapping in local optimum. SDF-DPD was proposed to solve multi-

target location problem in single moving station case [12], based on the ideas of multiple signals 

classification (MUSIC). Then [13] proposed a stationary multi-station DPD method with the theory of 

MUSIC. SDF-DPD method reduces complexity of multi-target DPD and have a good resolution. 
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Unfortunately, coherent signals often exist due to the complexity of signal propagation environment and 

SDF-DPD methods can not locate coherent signals efficiently. Moreover, statistical characteristic of 

sampling covariance matrix is insufficient under the snapshot deficiency condition, which causes location 

accuracy of the SDF-DPD methods loss and source resolution degradation. Sparse Reconstruction (RS) idea 

arised recently maybe provide a new way to overcome the above-mentioned shortcomings. It need not use 

the statistical characteristics of the covariance matrix and can locate coherent signal sources efficiently. It 

has been widely used in parameter estimation such as TOAs and DOAs [14, [15]. 

The objective of this study is to propose a new DPD method (denoted by TSR-DPD) that can locate 

coherent signal sources and improve high location accuracy and source resolution under low signal-to-noise 

ratio (SNR) and snapshot deficiency conditions. The proposed method solves the location problem with the 

theory of sparse reconstruction. We establish the sparse representation DPD model at first. Then the sparse 

vector is reconstructed using multi-snapshot matching pursuit method based on the idea of temporal 

information fusion. Finally, source positions are estimated from the sparse vector. Simulations indicate that 

the proposed method can locate coherent signal sources efficiently. It also has higher location accuracy and 

source resolution than SDF-DPD method under low SNR and snapshot deficiency conditions. 

The rest of this paper is organized as follows. The following section gives the DPD model. Section 3 

establishes sparse representation model of DPD and develops a sparse reconstruction method based on 

temporal information fusion. In section 4, we derive the model CRLB. Simulation results are provided in 

section 5. Section 6 concludes the paper. 

The following notations are used.  E   denotes the statistical expectation operation,  
T

  denotes 

transpose,  
H

  denotes conjugate transpose,   denotes empty set of real numbers, Φ  denotes empty set of 

vectors,  Re   denotes the real part of   and  Re   represents the imaginary part of  . 

2. Problem Formulation  

Consider Q  transmitters located at positions  ,
T

q q qx yp  for 1, ,q Q , and L  base stations 

intercepting the transmitted signals. The bandwidth of the signals is small compared to the inverse of the 

propagation time over each array aperture. Each base station is equipped with a uniform linear array (ULA) 

consisting of M  elements. The complex envelopes of signals observed by the l th base station array, located 

at positions  ,l lx y  for 1, ,l L , are given by the time-dependent 1M   vector 
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where ,l q is complex amplitude between the q th transmitter and the l th base station and obeys Hata 

propagation attenuation model.  l qa p  is the l th array response to a transmitter from qp , and  qs t  is the 

q th unknown signal waveform. The vector  l tn  represents white, zero-mean, complex Gaussian noise. T  

represents observation interval. In matrix notation, (1) becomes 

        ,l l lt t t r A p s n                                               (3) 

where 
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Concatenate the observed vectors at all base stations and form the following equation that encompasses 

all the raw data of the location system  

      ,t t t r As n   (5) 

where 
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Here， A  is the array response matrix. 

3. A Sparse Reconstruction DPD Method Based on Temporal Information 
Fusion 

The sparse representation of the DPD model is the precondition and reconstruction method design is a 

key step, when we locate signal sources directly using sparse reconstruction theory. In the following section, 

we will develop a sparse reconstruction DPD method based on temporal information fusion (TSR-DPD) 

from aspects of sparse DPD model building and reconstruction method design. 

3.1. Sparse DPD Model construction 

Figure 1 shows the signal source distribution in the interest area and we can divide the interest area into 

K  grids. Let 
kφ  denote the coordinates of the k th grid point. For better insight and simpler notation, we 

make assumption that the different signal locations are on the grid. The shaded areas represent true locations 

of signal sources and the white areas represent virtual locations of signal sources. The source number Q  is 

far less than grid number K  in practice and the source distribution has the property of spatial sparsity. 
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Fig. 1: Sparse distribution model of signal 

sources. 
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Fig. 2: The main idea of the proposed method under multi-snapshot 

and single target conditions. 

Assume that each grid is a potential location for a true signal source, let 
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Therefore, equation (5) yields immediately 

      ˆ ˆt t t r As n   (10) 

where Â  is the sparse dictionary, ŝ  is the sparse vector and ( )ks t  is the signal source on k th grid point. 

Equation (9) means that the sparse vector  ˆ ts  has exactly Q  non-zero entries, and the indices 

(collection of all indices can be called index set) of non-zero entries correspond to the actual locations of the 

signals. According to the theory of sparse reconstruction, the position estimation can be transformed into 

0l norm minimization problem of equation (11):  

 
0

2
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ˆ ˆ . 

s

r As
  (11) 

3.2. Multi-snapshot Matching Pursuit Reconstruction Method Design  
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The problem formulated by equation (11) is a NP-hard problem [16]. To solve the problem efficiently, it 

can be modeled as a linear program using matching pursuit method (MP). The main idea of the MP is to 

select the column vectors (atoms) from the sparse dictionary Â  and realize the optimal linear representation 

of the observation vector r . The linear representation coefficients form the sparse vector ŝ  which 

corresponds to actual signal locations. We can project the residual vector onto the sparse dictionary Â  and 

pick the column, which has the highest correlation with the residual vector, of Â  as the atom. 

The original MP method mentioned above can only realize single-snapshot problem like equation (11), 

which might cause unreliable estimates. Under the large snapshot number condition, equation (5) yields 

 ,ML J ML Q Q J ML J    R A S N                                                 (12) 
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The sparse DPD model the under multi-snapshot condition correspondly is   

 ˆ ˆ ,ML J ML K K J ML J    R A S N   (14) 

    ˆ ˆ ˆ1 , , ,J  S s s   (15) 

where J  denotes snapshot and Ŝ  represents the row-sparsity matrix. If and only if k qφ p , entries of the 

k th row in the row-sparsity matrix Ŝ  are not all zero. Therefore, equation (14) is modeled as a multi-

snapshot sparse reconstruction problem. 

The sparse reconstruction problem under the multi-snapshot condition is different from it under single 

snapshot condition. The observation matrix R  contains not only spatial information but also temporal 

information. While signal distribution only has the property of spatial sparsity and does not have the property 

of temporal sparsity. We could take temporal information fusion measure to utilize above property. Firstly, 

we can operate 2l norm on temporal samples of each spatial dimension and get a spatial sparsity vector. Then 

we encourage spatial constraints via operating 
0l norm on the spatial sparsity vector and reconstruct sparse 

sparsity vector using single-snapshot MP method mentioned above. So we can convert (11) into the multi-

snapshot sparse reconstruction problem defined by  
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To make it easier to understand, figure 2 shows the main idea of sparse reconstruction based on temporal 

information fusion, under multi-snapshot and single target conditions. The row-sparsity matrix Ŝ  is 

transformed into a sparse vector 'Ŝ  via 2l  norm operation. And the maximum entry of the sparse vector 'Ŝ  

corresponds to the true signal position. 

According to the above analysis, the main steps of the multi-snapshot matching pursuit method can be 

summarized as follows 

1) Initialize the residual matrix 0 Err R , iteration times 1i  , index set 0   , sparse degree Q  and 

atom library 0  0 . We also compute the sparse dictionary Â  at the beginning of iteration; 

2) Project the residual matrix iErr  onto the sparse dictionary Â , according to the equation (18), and get 

projection values ' ',k j
  of each snapshot. Then operate 2l norm on each row of projection matrix iU  

composed of ' ',k j
  and get the projection vector iu  of temporal information fusion. Finally, find out 

index i  of maximum element from the projection vector iu . 

    ' ' '

' ' '

,
ˆ, , 1, , , 1, , ,ik j k

j k K j J   Err a p   (18) 

where  'i jErr  is 'j th column of the residual matrix iErr .  
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3) Update index set 
1i i i     and atom library  1

ˆ
ii i   a p ; 

4) Update the residual matrix  
1

T T

i i i i i



    Err R R  with the principle of the least square; 

5) Update iteration times 1i i  . If i Q , return to the second step, otherwise, end iteration steps and 

export index set 
i . 

The multi-snapshot reconstruction method takes full advantage of temporal information, which avoids 

unreliable estimates under single-snapshot condition. In conclusion, the main steps of our proposed method 

can be summarized as follows: 

Original DPD 
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Establish Sparse 

Representation 

DPD Model

Multi-snapshot 

MP 

Reconstruction 

Export Location 

Estimation 

According to Index Set
 

Fig. 3: Processing steps of TSR-DPD method. 

4. Numerical Results 

In the following section, we will compare TSR-DPD method with SDF-DPD method from aspects of 

decoherence ability, location accuracy, source resolution and computational complexity. Consider three base 

stations located at (1.5, 1)km , (0,3)km and (0,0)km . Each base station is equipped with a ULA of 9 antenna 

elements. The spacing between elements is 2  , where   is the wavelength of the transmitted signals. 

The carrier frequency of the simulated signal is assumed to be 900MHz . Source number, source location, 

snapshot and SNR will be elaborated in different experiments, according to different simulation purposes. 

Define SNR for the passive location system as 
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where  y t  is the observed signal and  w t  is additive white Gaussian noise. 

Root mean square error (RMSE) is defined by 
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where N  is the number of experiments,  ˆ ˆ,x y  is the emitter location, and  ,i ix y  is the i th location estimate. 

Test Case 1: In the first experiment, we will test decoherence ability of TSR-DPD method. We used three 

coherent signal sources placed at  1,3 km ,  2,0 km  and  4,2 km . The snapshot is 100 and SNR is 30dB. 

The results of two methods are shown in Figure 3. 

 
(a) Spatial spectrum of TSR-DPD method. 

 
(b) Spatial spectrum of SDF-DPD method. 

Fig. 3: Decoherence ability comparison between TSR-DPD method and SDF-DPD method. 

As Fig 3 depicted, lots of false peaks arise in the spatial spectrum of SDF-DPD method and we can 

hardly distinguish true peaks around signal source positions. In contrast, three peaks around signal source 

positions arise clearly in the spatial spectrum of TSR-DPD method. That might be due to the fact that the 

covariance matrix is rank-deficient because of coherent signals and SDF-DPD method essentially belongs to 

subspace methods, which leads to SDF-DPD method being unable to locate coherent signal sources. While 

TSR-DPD method does not need the covariance matrix to locate coherent signal sources and will not face the 

problem of matrix rank deficiency. Therefore, TSR-DPD method can locate coherent signal sources 

efficiently. 
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Test Case 2: In the second experiment, we shall contrast the localization performance of TSR-DPD method 

with SDF-DPD method under the snapshot deficiency condition. The transmitter position is  4,2 km  and 

snapshot is 10. The SNR is varied between -12dB and 8dB using 2dB steps. The results are obtained from 

100 Monte Carlo ensemble runs and they are summarized in figure 4. 

 

Fig. 4: RMSE of two methods under the snapshot deficiency condition. 

Figure 4 shows that, compared with SDF-DPD method, location accuracy of TSR-DPD method increases 

by about 30%, when SNR is below -5dB. Both of two methods are close to the CRLB along with SNR 

increasing. Therefore, the proposed method has higher location accuracy than SDF-DPD method under 

scenarios of low SNR and snapshot deficiency. 

Test Case 3: In order to compare TSR-DPD method with SDF-DPD method in terms of source resolution, 

under scenarios of low SNR and snapshot deficiency, two signal sources are located at  2,2 km and 

 3,2 km . The number of snapshots is 10 and the SNR is -5dB. The spatial spectrums are plotted in figure 5. 

 
(a)TSR-DPD method spatial spectrum. 

 
(b) SDF-DPD method spatial spectrum. 

Fig. 5: Source resolution contrast between TSR-DPD method and SDF-DPD method. 

As Fig. 5(a) depicted, two sharp peaks of the TSR-DPD spectrum are visible and the proposed method 

can distinguish two near sources clearly and correctly. In contrast, SDF-DPD method can hardly distinguish 

two peaks. The result indicates that TSR-DPD method has higher source resolution than SDF-DPD method 

under scenarios of low SNR and a few snapshots. 

Complexity Analysis 

The computational complexity of SDF-DPD method mainly composes three parts: covariance matrix 

calculation, eigen-decomposition and cost function searching. The computational complexity of TSR-DPD 

method also composes three parts: computing sparse dictionary, projecting the residual matrix onto the 

sparse dictionary and updating the residual matrix. The computational complexity of each method is shown 

in Table 1. 

Table 1. Computational complexity comparison of two methods 

Method Name Computational Complexity 

 

SDF-DPD  
        2 3 2

o ML J ML ML KML ML Q     
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Considering that station number L , source number Q and array elements M  are often small, the 

complexity of SDF-DPD can be approximated as     2
o ML J KML ML Q   and the complexity of TSR-

DPD can be approximated as   1o MLK QKMLJ Q Q MLJ   . If snapshot number is very large, TSR-

DPD will have heavier computational complexity than SDF-DPD. However, the complexity of TSR-DPD 

will be equivalent to or even lower than the complexity of SDF-DPD, if snapshot number is small. Therefore, 

the proposed method is an excellent method under the snapshot deficiency condition. 

5. Conclusions 

The existing SDF-DPD method, in the multi-target location system, has low complexity but cannot 

locate coherent signal sources efficiently. And the SDF-DPD method also has location accuracy loss and 

source resolution degradation under scenarios of low SNR and snapshot deficiency. The proposed method 

establishes a sparse representation DPD model and develops multi-snapshot matching pursuit method based 

on the temporal information fusion to overcome the above-mentioned shortcomings. The simulations show 

that the proposed DPD is able to locate coherent signal sources and also has higher location accuracy and 

source resolution than the SDF-DPD under scenarios of low SNR and snapshot deficiency. 
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