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Abstract. For a TaskTracker has multiple local tasks available, by default, the scheduler executes those 

tasks in succession with the order of the tasks to be found, this is inefficient.  In order to optimize the local 

tasks scheduling, this paper presented Hadoop local tasks scheduling optimization algorithm based on 

Logistic regression model. First, related feature vectors of the local tasks were selected and defined, then, 

based on the way of machine learning with Logistic regression model, trained these vector to get the weight 

of each vector to  decide the task priority, and updated the model constantly by the overload rules. The 

experimental results show that the proposed algorithm improves map task data locality, at the same time of 

reducing job running time. 

Keywords: Hadoop, MapReduce, local tasks scheduling, task priority , overload rules, Logistic regression 

model three.  

1. Introduction  

As a kind of open source cloud computing platform, the Hadoop has been paid much attention in 

recently years. The Hadoop developed the GFS and the MapReduce of Google to HDFS (Hadoop 

Distributed File System) and Hadoop MapRedece, respectively. It should be noted that the Haddoop 

MapReduce is a new type of parallel computing model, which has been applied in the core part of computing 

platform for its advantages of efficiency, simpleness and etc. As an important part of MapReduce, the 

scheduling algorithm obviously has been paid wide attention for its performance could directly affect the 

Mapeduce. The network broadband is scarce in the Hadoop platform, thus improving the locality task seems 

much important. There are several related jobs should be introduced. In [1], Fisher et al. proposed tasks 

scheduling algorithm based on stream; In [2], Jin et al. introduced a novel method based on Bar ; Zahar et al. 

[3] proposed delay scheduling algorithm; Zhang et al. [4] and Gu et al. [5] respectively presented the Next-

K-Node and Three-Queue scheduling algorithm. However, all these mentioned jobs does not take the 

characteristics of the local task into consideration and ignore the distribution in data processing, thus we 

could not sufficiently employ the benefits comes from better tasks in performable local task list. 

In [6], Suresh et al. proposed An Optimal Task Selection Scheme (AOTSS). The AOTSS selects better 

tasks for scheduling based on the sum of feature weights, which can effectively improve the processing of 

task localization. However, the methods of feature extraction is too simple to most complex applications of 

big data, especially when we calculate the feature weights. As the feature weights need complex test 

according to empirical calculation, the final results may not be accurate enough. Inspired by these jobs above, 

we introduce Logistic regression model to implement the priority ranking for local tasks, which can 

powerfully select and define the feature vectors related to the tasks. Then, we can obtain the weights for all 

vectors based on machine learning of Logistic regression model and further implement the priority ranking. 
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Finally, the model would keep updating via the rule of overload, which can both improve the data locality of 

Map tasks and decrease the job time.  

2. Hadoop MapReduce 

Hadoop MapReduce is a subordinative construction model composed of a major node JobTracker and 

several slave nodes TaskTracker. The JobTracker is responsible to divide the jobs provided by clients into 

several tasks and these tasks will further be regulated. Each TaskTracker includes several Map slots and 

Reduce slots, the slot can execute the corresponding Map task or the Reduce task. Based on the Heart Beat 

rule, when there exists spare slot in the process of job, the TaskTracker will communicate with the 

JobTracker and request for tasks. After the execution has finished, the TaskTracker will also communicate 

with the JobTracker and report the execution results. It should be noted that the JobTracker always passively 

accept the information from TaskTracker. Meanwhile, the task executed by the spare node of TaskTracker is 

decided by the TaskScheduler in JobTracker. The task locality execution means that the JobTracker should 

divided jobs into some Map task for the execution to the stored nodes of task data, which is the key point of 

TaskScheduler. As all the Reduce tasks need to read the output of all the Map tasks, we schedule the Reduce 

tasks to the task nodes in the cluster, and the Internet cost does not change relatively. Therefore, this paper is 

mainly focus on the scheduling mechanism. 

3. Algorithm Design 

When there exist spare slots, the TaskTracker will send HeartBeat to request for jobs. After the jobs have 

been assigned, the Hadoop TaskScheduler will firstly search the locality tasks from the unassigned task list 

in the jobs. If the locality tasks can be found, TaskScheduler would immediately load and operate these tasks, 

otherwise, the rest tasks would be operated. Generally speaking, the first locality task loaded by Hadoop is 

the first locality task that be found. For a TaskTracker, assuming that there are several locality tasks, the 

throughput rate would decrease, which may affect the operational efficiency to the whole system. For an 

application of big data, the locality tasks are huge in quantitative terms, thus we can obtain much benefits 

from the improved scheduling problems. 

In order to select the "master" tasks, we need to obtain related features that can affect the priority. 

Meanwhile, these learned features can have different effects to the priority, thus for the measure to the 

priority, we need to preset the weights to these features for the locality tasks. The key point to the measure of 

priority is based on the overload. 

Thus there are three important parts for the whole algorithm: the selection of feature vectors, the 

allocation of overload rule and the acquisition of weights. 

3.1. Selection and definition to feature vectors 

Definition 1) Replica-Num 

Hadoop can divide the input file into several blocks based on HDFS. After this step, each block will be 

copied by Hadoop. The HDFS will decide to produce or delete the block based to the replication algorithm 

according to the overload situation, which leads the number of replication for each block can be different. 

Compared with the block which has more replication, the tasks to the block which has fewer replication can 

be much more urgent. In addition, after the JobTracker has arranged tasks for Map, the node will cope the 

block requested by this tasks into the locality storage according the principle of proximity, thus the number 

of block can much affect the chance of locality, and we need preferential take the block which has fewer 

copies into consideration. This paper has further defined the copied weights Replica-Weightage as follow: 

)min()max(

)min(

RNRN

RNRN
RW




                                                                      (1) 

where the min (RN) and the max (RN) respectively represent the minimum number and maximum number of 

replication. The RN can be obtained from the system, and the value is between 0 to 3. Similarly, the value of 

RW is between 0 to1. This paper cast the RW as the training input of classifier. 

Definition 2) Task-Waittime 

739739



About the jobing mechanism to Hadoop MapReduce, there are two situations for the assigned task to 

TaskTracker. One is when all the TaskTracker in the preliminary round can have the spare slots, it can 

preferential ask for the locality tasks via Pull communication model, which belongs to the startup phase. The 

other is when TaskTracker does not have the spare slots, we need to estimate the Task-Waittime, which 

means that we need preferential take the TaskTracker that has the longest Task-Waittime into consideration, 

thus the TaskTracker can be released quickly. Moreover, we can improve the hit rate of behindhand tasks 

and control the number of replication tasks, thus we can further reduce the response time, reject the shaking 

and improve the locality for the tasks. Assuming we have the implementation schedule progeress, the current 

system time currenttime, the scheduling time scheduletime, and the progressing rate progressrate, we can 

calculate the Task-Waittime as follows: 
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Definition 3) Disk-Load 

As the replications of block are kept in different disks and different nodes, if the data of uploaded task is 

reserved in the minimum disk load of locality node, the pretty high conversion rate can be realized in terms 

of disks, which means that we can obtain much better locality tasks. We have the following calculation: 

For a node, the load on the disk equals the sum of request to IO and the internet IO cost of non-locality 

tasks. For simplification, we set the number of slots in the node as Ns, the number of running tasks NR, thus 

the Disk-Load (DL) can be obtained: 

NS

NR
DL 1                                                                              (4) 

3.2. Overload rule 

Overload rule is used to identify that whether the overload is caused when the task is under processing. 

For simplification, we apply 1 and 0 represent the overload happening and does not happening, respectively. 

The allocation to overload rule is based on the request. If the most submitted jobs are CPU intensive, we 

need both the CPU utilization rate and average load to judge the node is whether overloaded. If jobs are 

memory Intensive, we need take the utilization rate of memory into consideration. If the jobs have heavy IO 

activities, the utilization rate of Internet should be considered into the overload rule. This paper has 

considered both the CPU memory and the IO factors. All these observed value can be obtained by the 

running log of observed nodes. 

3.3. The acquisition to weights based on the Logistic regression model 
1) Logistic regression model 

Logistic regression is probabilistic and nonlinear regression model. For n independent eigenvectors 

),...,,( 21 nxxxx , assuming the conditional probability )|1( xyP   is the  probability that event x 

happens according to the observed quantity. Thus the Logistic regression model can be represented by: 

xe
xxyP




1

1
)()|1(                                                               (5) 

where 
xe 1

1  is called as Logistic function. We set nnxwxwxwwx  ...22110 , 0w  denotes the 

intercept, and 
nwww ,...,, 21

 mean slope. If we have the condition x, the probability that event y dose not 

happen is: 

xe
xyPxyP




1

1
)|1(1)|0(                                                           (6) 

Thus the ratio between the happening and un-happening is: 

xe
xyP

xyP
odds 




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This ratio is names as the Odds of Experiencing an Event. For convenience, we rewrite it as odds. 

2) The acquisition to weights 

For the task T (RW, TW and DL), the acquisition to weights 3210 ,,, wwww  refers to the learning of 

Logistic regression model [7]. Giving m observed samples from the running log, which respectively denote 

as myyy ,...,, 21 , the probability that the overload happens is )|1( iii xyPp  .Otherwise, the 

probability that the overload does not happen is iii pxyP  1)|0( . Therefore, the probability we 

get one observation is ii y
i

y
ii ppyP 


1
)1()( . As all the observed samples are independent each other, 

the simultaneous distribution is the product of all the marginal distribution. The likelihood function is: 

i
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Maximum likelihood estimation is aimed to obtain 3210 ,,, wwww , which can make the )(wL get 

maximal value. We take the logarithm to )(wL : 
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Vector 3210 ,,,w wwww , which makes the )(wL  maximal, and 

3322110 iiii xwxwxwwx  . 

We Seek partial derivative for the likelihood function mentioned above: 
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We apply gradient rise to further handle Eq. (10), thus we have: 
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According to the functions above, we initialize the vector 3210 ,,,w wwww  as random value and start 

to iterate until we get the given precision. 

4. Experiment  

In order to test the effectiveness of the proposed method, we construct the Hadoop cloud computing 

platform provided by the health information center in Nanjing. Specific configurations include 8 PC, 1 

JobTracker and 7 TaskTracker. The CPU is Inter Core i3-4150 with 3.5GHZ, memory is DDR3-1600 with 

4GB, and the hard disk is 500G with 7200 r/min. We adopt the Ubuntu 14.04.3 LTS as the operating system. 

The core is Linux 3.13.0, the java environment is jdk-6u24-linux-i586, and the Hadoop is 2.4.0. The Eclipse 

3.4.1 is used as the development tool and the TP-Link interchanger with 16 mouth is applied as the network 

equipment.To observe the performance of different scheduling algorithms, we employ the representative 

WordCount as benchmark test program. The tested data is from RandomTextWrite in Hadoop. The Job 

configuration is listed in Table I. The job interval is set 15 sec. The block size is set as 32M. 

Table I. The parameters of job 

    Job Map number of tasks The amount of data 

     Job1           4         128 

     Job2           8         256 

     Job3          16         512 

     Job4          32        1024 

     Job5          64        2048 

 

1) The optimization experiment to data locality 

We take the FIFO as benchmark scheduler and modify the proposed configuration optimization 

scheduling algorithm in the programmable interface of TaskScheduler. The obtained data from the 

WordCount application is visualized by OriginPro 8, which is showed in Fig. 1. 
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Fig. 1: The comparison of data locality.                           Fig. 2: The comparison of running time. 

It can be seen from Fig. 1, when the amount of data is too large or too small, the earnings of FIFO is 

much weak. One reasons is that when data quantity is small, the effect of learning method to the scheduling 

impact is weak. The other reason is that when data quantity is large, the data locality of FIFO is already 

strong, thus the optimization is meaningless. When the data quantity is between 256M-1024M, that is the 

number of tasks is 8-32, the data locality is improved about 15% averagely, and the maximum is 18%. 

This paper also take Delay Scheduling Algorithm as the optimized object for the experiment. As DS 

greatly increase the locality at the expense of the fair principle, our proposed method do not show the 

improved degree. However, for the situation strict with fair principle, the optimization of our proposed 

method is meaningful. As there are many factors when improving the MapReduce, we need to consider from 

different views in different situations.  

2) The optimization experiment to running time 

It can been from Fig. 2, as the overload of our method is equipped with learning ability, our method can 

keep adjusting when we optimize for DS. When the data quantity is increasing, the running time is relatively 

decreasing to DS. The average decreased time is about 70 sec, and the maximum value is about 100 sec in 

2048M. 

5. Conclusion 

As existing scheduling algorithms are lack of concern to locality task, we introduce Logistic regression 

model to combine with Hadoop for the optimization of locality task. The experimental results demonstrate 

that the optimization algorithm based on machine learning does not improve the locality of map task, but can 

also obtain more efficient running time. The effectiveness of our paper is certainly meaningful to the large-

scale data centers and cloud computing centers in the age of Internet plus. In future work, several other 

feature vectors which are influencing the priority will be considered and also should pay attention to some 

other performance such as load balancing and resource utilization.  
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