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Abstract. This paper presents a new audio crossover network based on q-Bernstein polynomial which can be 

adjustable attenuation in stop-band by varying parameters of the transfer function. The crossover network 

gives an in-phase response and a flat summed of magnitude response of each filter through audio frequency 

band. The simulation results shown that the crossover network given high attenuation in stop-band which 

better than conventional crossover network at second-order and fourth-order. Moreover, the crossover 

network structure can be reduced complexity by based on subtractive circuits. Therefore, the proposed 

crossover network provided a high quality crossover network and can useful for professional reproduction 

sound systems.  
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1. Introduction 

Generally, a crossover network used to divide wide frequency of an audio band for suitable of operating 

driver frequency. A two-band crossover network contains a low-pass filter and a high-pass filter for divide 

low frequency signal apply to low frequency driver or called woofer and the other high frequency signal 

apply to high frequency driver or Tweeter. When a driver is add between high and low frequency band, it is 

called “midrange” which use band-pass filter(BPF) to filter only specific frequency band and the crossover 

network is named a three way crossover network.  

In conventional crossover network can be realized both of passive or active network type. For high 

quality audio requirement obtained, the network should be follow below properties [1-4]. 

1. Summation of frequency response should flat (Flat magnitude response) 

2. High slope  

3. In phase for crossover frequency 

4. Linear Phase response or group delay should be flat in pass band 

A typical crossover network implementation, a fourth order Linkwitz-Riley [5] or LR4 filter is often 

used because it given 1 and 3 properties but it does not met 2 and 4 properties. In an audio acoustic 

engineering term, the third property is an important property of the system to related directing of sound 

radiation. However, if there are available networks that miss this property which caused the main beam of 

polar radiation pattern tilted on axis and sound quality perceived can be degraded [5], [7]. 
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This paper presents a new crossover network which can be adjustable attenuation in stop band by 

changing α, q and epsilon parameters of the transfer function of q-Bernstein filter. In additional, the in-phase 

and  flat magnitude characteristics is provided by the network over audio frequency band.  

2. Crossover Network 

2.1. q-Bernstein filter 

In conventional designed filter used approximating low-pass filter by classical polynomials such as 

Butterworth polynomial, etc. It has only one parameter to control the stop band attenuation of the filter by 

change the order of the transfer function. Thus, it cannot provide variable parameter of the transfer function 

for change the frequency characteristics to meet the desired magnitude response, when the order is given. 

Therefore, the crossover network that implemented by such filters cannot meet a requirement of the high 

quality needed and affects to generating distortion of the output signals. According to [6], Bernstein 

polynomial is applied to be a video equalizer due to it gives a better characteristic of frequency responses. A 

Bernstein filter can be approximated by Bernstein polynomial which corresponding to the desired function 

f(x) on the range of (0-1). Therefore, the Bernstein polynomial order-n is written as follows 

𝐵𝑛(𝑓; 𝑥) =  ∑ 𝑓 (
𝑘

𝑛
) . (𝑛

𝑘
) 𝑥𝑘 . (1 − 𝑥)𝑛−𝑘𝑛

𝑘=0                                                …(1) 

 

When f(x) is a desired function to approximates and given that   

 

𝑐𝑜𝑠2𝑥 + 𝑠𝑖𝑛2𝑥 = 1                                                                     (2) 
 

From quantum calculus in reference [7] to instead f(x) into (1-a)
n
 form, we can rewriting as 

 

   (1 − 𝑎)𝑞
𝑛 =  ∏ (1 − 𝑞𝑗. 𝑎)𝑛−1

𝑗=0                                                              (3) 

 

Thus, from (1) and (2) when substituting 𝑎 =  (
𝑦

∝
)2 in (1) , yields 

 

   𝐵𝑛,𝑞(𝑓; 𝑥) =  ∑ 𝑓 (
𝑘

𝑛
) . (𝑛

𝑘
)

𝑞
𝑥𝑘. (1 − 𝑥)𝑞

𝑛−𝑘𝑛
𝑘=0                                                (4) 

 

And also substituting (3) into (4) and rewritten by 

 

  𝐵𝑛,𝑞(𝑓; 𝑦2) =  ∑ (1 − (
𝑘

∝.𝑛
)2)

−1

. (𝑛
𝑘

)
𝑞

𝑦2.𝑘. (1 − 𝑦2)𝑞
𝑛−𝑘𝑛

𝑘=0                                      (5) 

 

An equation (5) is a general form of q-Bernstein polynomial of order n 

And the relation of approximating functions and desired functions are 

 

   𝑓 (
𝑘

𝑛
) =  (1 − (

𝑘

∝.𝑛
)2)

−1

= cos2 𝑥   ; for LPF                                                 (6.1) 

   𝑓 (
𝑘

𝑛
) =  (1 − (

𝑘

∝.𝑛
)2)

−1

= sin2 𝑥   ; for HPF                                                 (6.2) 

To obtain an approximating low-pass filter by using q-Bernstein polynomial, we can substituting (5) and 

(6) into (7), that is  

   |𝐻𝑛,𝑞(𝑓; 𝑦2)|
2

=  
𝐴𝑜

2

[1+𝜀2.𝐵𝑛,𝑞
2(𝑓;𝑦2)]

                                                               (7) 

We can changes a variable that lies in limited range to a new range, we can substituting an old variable y 

to a new variable, yields 𝑦2 = (
Ω2

1+𝛺2), for LPF and 𝑦2 = (
1

1+𝛺2), for HPF. And to obtains a transfer function 

in s-domain, we can substituting Ω  with as Ω =  −𝑗/𝑠 .Thus from (7), the magnitude squared transfer 

function can rewriting in a rational polynomial form as  

𝐻𝐿
2(𝑠) =  

𝑁𝑛
2(𝑠)

𝐷𝑛
2(𝑠)

                                                                                (8) 
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When we is given an order of the system, i.e. n = 2, we can rewriting a numerator polynomial as  

 

   𝑁𝑛
2(𝑠) = (1 − 𝑠2)2                                                                           (9) 

 

And a denominator polynomial can write as   

 

   𝐷𝑛
2(𝑠) = [𝑠4(1 + 𝜀2(𝐴 + 𝐵)) − 𝑠2(𝜀2. 𝐵 + 2) + (𝐶 + 1)                                               (10) 

 

where 𝐴 = 𝑞 +
𝛼2

𝛼2−1
− (1 − 𝑞). (

4𝛼2

4𝛼2−1
), 𝐵 = (1 + 𝑞) (

4𝛼2

4𝛼2−1
) − (𝑞 + 1) and C = 1 are the coefficient of 

filter, respectively. 

 

 
Fig. 1: Magnitude responses of q-Bernstain filter with varies stopband attenuation at ∝ = 0.55, q = 0.9 and 𝜀 = [0.5 1.0 

1.5 2.5 3.5 5.0 10 15]. 

 
Fig. 2: Magnitude responses of q-Bernstain filter with varies stopband attenuation at  0.4 < q < 1, fixed  𝜀 = 1 and 

∝=0.55. 
 

The magnitude of the q-Bernstein Low-pass filter with various parameters is shown as Fig.1. The stop-

band attenuation of the filter can be changed from 10 dB(𝜀 = 0.5) to 68 dB 𝜀 = 15) by varies 3 parameter as  

∝ = 0.55, q = 0.9 and 𝜀 = [0.5 1.0 1.5 2.5 3.5 5.0 10 15]. We can seem that the magnitude response as wide 

range changed or coase fine adjustment by 𝜀  parameter. Whereas the magnitude is presented in Fig.2 shown 

a fine adjustment by changed q parameter in range 0.4 to 1 with 0.2 dB/step and another parameters are  

fixed as 𝜀 = 1 and ∝= 0.55. The magnitude in stop-band can change in narrow range of dB. The magnitude 

response of the proposed filter is rather flat in pass-band which is one significant characteristic of the high 

quality filter for delicate audio field. 

2.2. Subtractive Structure 

A Conventional two-way crossover network consists of a low pass filter (LPF) and a high pass filter 

(HPF) is shown in Fig. 3 when gives H1(s) and H2(s) as LPF and HPF (without subtractive path), 

respectively. Generally, The Butterworth filter is often useful to implements of crossover network because it 

provides only a maximally flat magnitude response but all requirement properties cannot meet. A 
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disadvantage of the direct structure is not guarantee to meet the requirement 1, when used a second-order; 

and also complexness of the circuit is given. To reduction complexity, we can instead the H2(s) with delayed 

process or all-pass filter (APF) [2] and [4]. Therefore, the output of the high frequency signal Yu(t) can be 

obtained by subtracting the output signal of the LPF and APF. The transfer function of the crossover network 

can be written in s-domain as  

   𝐻𝐿𝑃(𝑠) + 𝐻𝐻𝑃(𝑠) = 𝐴(𝑠)                                                           (11) 

where  𝐻𝐿𝑃(𝑠) 𝑎𝑛𝑑  𝐻𝐿𝑃(𝑠) are Low-pass and High-pass filters, respectively. 

2.3. In-Phase All-Pass Crossover Network  

Given that an stable all-pass filter defined as  

 A(sn) ≜  
D(−sn)

D(sn)
                                                                            (12) 

where D(sn) is a polynomial of stable system, i.e. Butterworth polynomials   

 

 
Fig. 3: Subtractive structure of a two band crossover network. 

 

The LPF transfer function can be written in an all-pole low-pass filter form as  

HL(sn)  =  
1

[Dr(sn)]2                                                                            (13) 

Since, from (13) the transfer function of the HPF is achieved by subtraction the output of the APF with 

the output of the LPF, yields 

HHP(sn)  ≜  A(sn) − HLP(sn)                                                                (14.1) 
 

=  
D (sn) D(−sn)−1

[D(sn)]2                                                                              (14.2) 

When substituting 𝑠 = 𝑗. 𝜔  into (12)–(14), the magnitude response of these filter are obtained. 

Simulation Results of the proposed crossover network shows next section both two-band and three- band 

networks. For a three-band network, the transfer function of a three filters can be implemented by cascading 

of an APF transfer function and a constant voltage transfer function which are in second-order [8]. The 

frequency responses of these crossover networks are shows in next section. 

3. Simulation Results  

The magnitude and phase frequency responses of the two and three way crossover networks are shown in 

Fig. 4 and Fig. 5, respectively. 

          
(a)                                                                                (b) 

Fig. 4: Frequency responses of the proposed two-band crossover network. (a) Magnitude of LPF, HPF and their 

summed and (b) phase response. 
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(a)                                                                              (b) 

Fig. 5: Frequency responses of the proposed three-band crossover network. (a) magnitude responses and their summed 

and (b) phase Responses. 

 

From Fig. 4 shows the frequency response of the proposed two-band crossover networks. The 

comparison of the magnitude responses is shown in Fig. 4a. It shown that the slope of both LPF and HPF is 

about 10 dB/Octave, which is higher than the Butterworth filter at the same second-order. The summed of 

the magnitude responses is flat (0 dB.) whole all frequencies. The phase response of the LPF and the HPF are 

same the APF. The frequency responses of the three-way crossover network are depicted in Fig. 5. The slope 

of the LPF and HPF is high rate and their summed magnitude is also flat at all frequencies. The phase 

responses of all filters are rather same phase which meet the in-phase properties.  

4. Conclusion 

The new two and three ways crossover network based on q-Bernstein filters having in-phase and flat 

summed of magnitude response properties with varying slope rates by changing variable parameters of the 

filter coefficients is presented. The proposed crossover network is less of complexness due to a useful of 

subtractive structure form and provided a high slope rate in transition band more than 10 and 20 dB/octave 

for the second-order and fourth-order of LPF, respectively.  
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