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Abstract. This paper describes a simple decomposition technique for volumetric models.  3D polygonal 

models are converted to volumetric models, and these models are decomposed by a standard K-means 

clustering technique.  Although the standard K-means clustering technique uses randomly generated initial 

seeds to determine the starting centroids of the clusters, our technique uses distance maps to determine 

unique centroids.  Preliminary experiments are conducted on a database of 3D models with various shapes. 

Our method shows better decomposition results compared to random decomposition results, since the 

technique uses a 3D model’s geometrical features. 
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1. Introduction 

Decomposition techniques are important, and techniques can process 3D models into components based 

on some geometric shapes or semantic criteria. Intensive research was conducted on 3D model 

decomposition techniques, because many applications require these techniques, including partial shape 

matching [1], local shape retrieval, digital watermarking and salient parts detection. Although much research 

focuses on techniques for mesh or polygonal model of 3D data, our technique focuses on simple volumetric 

data. In our experiments, 3D polygonal models are converted to volumetric models, and these models are 

decomposed by a standard K-means clustering technique. Our technique uses distance maps to determine 

unique centroids for initial seeds of K-means clustering. A number of initial seeds are controlled by the local 

maxima detection ratios. These enable the user to determine how many decomposed parts are generated from 

a 3D model. 

In our experiments, some portions of popular benchmark 3D model data sets [2] are used. 3D polygonal 

models are converted to volumetric models using a software called “binvox,” [3] which uses several efficient 

voxelization algorithms [4]. Voxelizations of 3D polygonal models are time-consuming tasks, especially in 

regard to obtaining higher resolutions of volumetric data. It takes about 1.5 hours to convert 1804 3D 

polygonal model data [2] to volumetric data with a resolution of 646464. Once 3D polygonal model data 

are converted to volumetric data, two important processes are required, including (1) a conversion of 

volumetric data to graph represented data and (2) a conversion of volumetric models to a distance map 

created by distance transform algorithms. 

2. Graph Representations 

In the initial process, volumetric data have to be converted to graph representations for computing 

distances between each voxel in volumetric data. As shown in Fig. 1, each voxel represents a node of the 

graph, and neighboring voxel relations represent edges of the graph. Fig. 2 shows an example of the 

volumetric model “rabbit” (646464). It is represented in binary values of either zero or one, and there is a 
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total of 15,399 voxels with value one. Since there are 15,399 voxels with value one out of 262,144 total 

voxels, about 5.87% of a volumetric cube is filled. When the 3D model is represented by a graph, there are 

15,399 nodes and 357,094 edges. Once the model is converted to a graph, it is not difficult to find the 

shortest path between two voxels. We have used the famous Dijkstra's algorithm to solve the problem of 

finding the shortest path between two voxels in a graph. It is important to address voxel connectivity by 

using a graph to find the shortest path for concave models, because simple voxel coordinate-based Euclidean 

distance computations fail for concave models. 

 

 
Fig. 1: Graph representation of volumetric data. 

 

 

 
Fig. 2: Volumetric model “rabbit” (646464). 

3. Distance Transform 

Another important process is the conversion of volumetric models into distance maps.  A distance map is 

created by distance transform (DT) algorithms.  The distance transform algorithms map each volumetric data 

voxel into its smallest distance to regions of interest.  There are efficient algorithms for creating distance 

maps for 3D volumetric data.  For example, paper [5] presents the Euclidean distance transformation of 3D 

binary pictures or images.  In our experiments, distance transform algorithms are applied to volumetric 
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models to detect candidates for centroids of K-means clustering. Fig. 3 shows a distance map of a “rabbit” 

(646464). In Figures, dark regions of the distance map correspond to small distances, and bright regions of 

the distance map can be thought of as hills with the local maxima. Each local maxima in the distance map is 

a candidate for centroids. Each local maxima is detected by scanning it through the distance map using a 

333 filter. Every voxel has 26 adjacent voxels, and the local maxima is computed comparing the value of 

the center voxel and values of adjacent voxels. If the value of the center voxel is always higher or equal to 

values of adjacent voxels, the center voxel is a candidate of local maxima. It is possible to control the local 

maxima detection ratios by changing the number of adjacent voxels in the comparison. If 6 adjacent voxels 

are used rather than 26 adjacent voxels, more local maxima are detected. A set of local maxima candidates 

can be sorted based on the voxel value of the distance map. A set of local maxima with a higher value is 

chosen for the final local maxima set, and redundant local maxima can be removed if the distance between 

two local maxima is very close. Fig. 4 shows local maxima points in a “rabbit” (646464). Once a set of 

local maxima is detected, it is used for the initial centroids for K-means clustering. 

 

     
Fig. 3: Duck (volumetric model, clipping plane and distance map). 

  

Fig. 4: Local maxima points (220 points) in a volumetric model “Duck” (646464). 

4. Experiments and Results 

In the experiment, the convergence properties of the K-means clustering are evaluated. Fig. 5 shows that 

the K-means algorithm converges to stable centroids of clusters. Both randomly generated initial centroids 

and our distance-map-based initial centroids are examined. Fig. 6 shows both clustering results for 5 models 

(duck, fish, human, turtle and snowman).  Our method shows meaningful clustering results in terms of 3D 

model shapes. For instance, each cluster size is balanced in a way that reflects the symmetry and shape of 3D 

models. 
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Fig. 5: K-means algorithm converges to stable centroids of clusters.  

     
Randomly generated initial centroids (clusters: 4, 6, 17, 15 and 5) 

 

     
Distance-map-based initial centroids (clusters: 4, 6, 17, 15 and 5) 

 

Fig. 6: Examples of clustering results (random method and our method). 

5. Conclusion and Future Work 

In this research, we examined a simple decomposition technique for volumetric models. 3D polygonal 

models are converted to volumetric models, and these models are decomposed by a standard K-means 

clustering technique. Although there are an infinite number of ways to cluster 3D models if randomly 

generated initial centroids are used, our simple method determines identical clustering results regardless of 

the implementation of the software. It is convenient that the system generates identical clustering results by 

specifying a few parameters. Our method can control a number of decomposing parts for 3D models by 

controlling the number of local maxima in use. In future works, we will investigate other initial centroid 

determination algorithms for better decompositions.   
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