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Abstract. This paper presents noise predictive maximum likelihood (NPML) detection for high-speed 

electrical backplane channels. Different from the partial response maximum likelihood (PRML) whose 

optimum coefficients are obtained from optimal decision feedback equalization (DFE), NPML achieves its 

coefficients by a noise prediction method which can be further incorporated with the computation of branch 

metrics in Viterbi algorithm, resulting in the removing of extra DFE and the simplification of hardware 

realization. The simulation results show that NPML detection can obtain better detection gain over 

conventional DFE when compared with PRML detection. 

Keywords: backplane; noise predictive; decision feedback equalization  

1. Introduction  

Along with the growth of data transmission speed, the frequency-dependent loss characteristics and co-

channel interference of legacy backplane cause the overlap of adjacent signals, i.e., inter-symbol 

interference(ISI), which may result in the eye diagram of received signal closed and the bit error rate (BER) 

of the overall backplane links deteriorated. One useful approach to combat channel characteristics is to use 

various equalization strategies [1-2]. The most commonly used equalization for high-speed backplane links is 

nonlinear decision feedback equalization (DFE). The traditional symbol-by-symbol (SSD) based DFE, 

however, has an unavoidable problem named error propagation which may worsen the BER performance. 

Different from DFE, which attempts to equalize the signal to remove as much of the ISI as possible, a PR 

maximum likelihood sequence detection (PRMLSD) aims to equalize the received signal to a known PR 

response can produce better performance without error propagation by combining with a maximum-

likelihood such as Viterbi algorithm. To simplify the hardware realization of PRMLSD, this paper researches 

a noise-predictive PRMLSD and compares it with the conventional DFE. 

2. DFE and PR Equalization 

2.1. DFE 

Fig. 1 is the architecture of traditional DFE which consists of a feed-forward filter, which is used to 

cancel pre-cursor ISI, and a feedback filter, mainly used to remove post-cursor ISI. The output of DFE 

equalizer can be given by:                            
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where z(n) is the input of equalizer, d(n) is the output of SSD, ai(i=－L~0) and bk(k=1~N) are the coefficients 

of feed-forward and feedback filter, respectively. Usually, ai and bk can be found by the channel impulse 

response. Fig. 2 is an example of channel impulse response, in which the solid line is the input signal and the 
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dotted line is the impulse response. We can see that after being transmitted through the loss channel, the ideal 

pulse is attenuated and broadened due to ISI.  
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Fig. 1: A typical DFE architecture                     Fig. 2: Channel impulse response      

2.2. PRMLSD 

With the aim of equalizing the received signal to a known PR response, PRMLSD is different from the 

conventional DFE. Fig. 3 shows the architecture of PRMLSD, which consists of two blocks: a PR filter and a 

Viterbi algorithm module, mainly concerns the operations such as add-compare-select (ACS) and trace back 

(TB). PR filter can be expressed by: 
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where )(ˆ nz  is the output of an ideal partial response at time n, a(n) is the reference data in Fig.4, h(l) is the 

coefficient of PR filter, and l=0 denotes the current symbol. The coefficient of PR filter h(l) should be as 

accurate as possible in order to obtain good equalization performance.  
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Fig. 3: PRMLSD             Fig. 4: An eight-state trellis diagram                Fig. 5: NPMLSD   

As for the second block, by Viterbi algorithm the detector can determine the most-likely transmitted 

sequence from all of the transmitted sequence to raise the performance of PR equalization [3-4]. Fig.4 gives 

an 8-state trellis diagram of Viterbi algorithm. The branch metric between two states j and k at time n is the 

Euclidean distance between the received equalized symbol sample and the known partial response signals 

and can be calculated by 
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And for state j, the state metrics which are accumulated by branch metrics at time n can be described by: 

 ),,()1,(),,,()1,(min),( nljbmnlsmnkjbmnksmnjsm                 (5) 

where k and l represent two possible states from which state j can be arrived at. Actually, Eq. (5) responds to 

the operation of so called add-compare-select. Finally, the best path can be selected by a trace back operation. 

The most-likely transmitted sequence is the sequence with the least accumulated state metrics. 

2.3. Noise predictive MLSD 

As mentioned above, by using optimized h(l) and Viterbi algorithm, PRMLSD can outperform 

conventional DFE at the cost of additional DFE filter although it is not always necessary. To remove the 

expansive DFE while obtain desired performance, a noise predictive MLSD (NPMLSD) is explored in this 

paper. Suppose )(ˆ nz is the samples expected for the data at time n, then from Eq. (2), we have:  
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where hf (l) denotes a fixed PR coefficient which can be set based on the experience and w(n) is the total 

distortion including noise component and residual interference. It is obvious that the more accurately w(n) is 

estimated, the more residual interference components or noise can be eliminated. So, NPMLSD should 
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include a NP filter as well as a PR filter and a Viterbi algorithm module, shown as Fig.5, in which )(ˆ nw  is 

the estimation of w(n) and NP filter adapts its coefficients with least mean square (LMS) algorithm. 

Below we will illustrate how NPMLSD works. First we define )(ˆ nw : 
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where pi (i=1~K) is the coefficient of NP filter. Actually the adaptive predictor coefficients can be obtained 

offline using LMS algorithm whereby the coefficients are adapted per Eq. (8).  is the adaptation gain and 

e(n) is the error of predictive noise at time n. The equalized sample can be obtained by Eq. (10) 
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Furthermore, the result of noise estimation can be incorporated directly into the branch metrics of Eq. (4):  
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And from Eq. (6) w(n-i) can be expressed by Eq. (12). Finally, by substitute Eq.(12) into Eq. (11) the 

branch metrics which is only dependent on the input data a and the known NP filter is obtained. Take PR2 

response and 2-tap NP filter as an example where N=1 and K=2, the corresponding branch metrics is:
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(a) A 4-tap NP filter                   (b)   Simulation result of 4-tap NP filter  

Fig. 6: NP filter 

It illustrates that NPMLSD can be realized with easy by incorporating the noise prediction with the 

computation of branch metrics in Viterbi algorithm while does not need an extra DFE. From Eq. (12) it can 

also be observed that an NP filter with more taps will benefit the performance of NPMLSD. Fig. 6 shows a 

4-tap NP filter and its simulation result, from which we can see that the predictive noise is very close to the 

practical one.  

3. Simulation Experiments  

Fig. 7 gives our simulation platform in which 3 kinds of equalization scheme are simulated: DFE, 

PRMLSD and NPMLSD. In order to analyze and compare the performance of DFE and other two PR 

equalization schemes, all the performances are evaluated in terms of BER. Fig.8 shows the channel 

magnitude response of four channels. And the insertion loss at 6.25GHz and 12.5GHz are shown in Table 1. 

Table 2 gives the main parameters used in the simulation.  

3.1. Results analysis 

Fig.9 gives the simulated result of eye diagram for SSD-based DFE. Fig. 10 gives the output BER versus 

input SNR for the three equalization techniques. In the legends DFE3SSD means 3-tap SDD based DFE. 

DFE3MLSD means PRMLSD equalization with PR coefficients obtained from optimized DFE tap 

coefficients through adaption for a 3-tap DFE. PR2NP2MLSD and PR2NP4MLSD refer to NPMLSD 
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detection with a PR2 partial response followed a NP filter, the only difference between them is the tap 

number: the former is 2, and the latter is 4. We can observe that for the lower loss channel A with a loss of 

7.5dB, the detection gain of PR2NP2MLSD is around l.2dB at10-6 BER, not significant. For PR2NP4MLSD, 

however, the gain is increased to 2dB. For channel D, the detection gain of NPMLSD can be up to 2.5dB at 

10-3 BER, while it is only 2dB for PR2NP2MLSD. It can be summarized that for all of the channels, MLSD 

based detections have detection gains over conventional DFE and PR2NP4MLSD has the highest one.   
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Fig. 7: Simulation platform    Fig. 8: Channel magnitude response   Fig. 9: Eye simulation 

Table 1: Channel insertion loss 

 
Channel 

Insertion loss(dB) 
6.25GHz 12.5GHz 

A 4.557 7.561 

B 7.036 10.874 

C 11.617 19.007 

D 12.356 24.882 

 

 

 

Table 2: NRZ modulation simulation parameters 

Modulation NRZ 

Symbol rate 25Gb/s 

Test pattern PRBS31 

State number 8 

Branch metrics 16 

Simulation results Eye, BER curve 

Path memory length 48 

Number of DFE taps 3 

Analysis mode Statistical 

 

       
(a) NRZ BER curve of channel A   (b) NRZ BER curve of channel B   (c) NRZ BER curve of channel C   (d) NRZ BER curve of channel D 

Fig. 10: BER simulation results 

4. Conclusion 

In this paper, noise predictive maximum likelihood equalization, partial maximum likelihood 

equalization and decision feedback equalization are discussed and analyzed in detail. The simulation results 

show that NPML detection can achieve better detection gain over conventional DFE when compared with 

PRML detection by using noise prediction method and Viterbi algorithm, while need not extra DFE, 

consequently, NPML equalization will be worth considering for high-speed backplane system for improving 

signal integrity. 
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