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Abstract. Convertible authenticated encryption (CAE) scheme is a cryptographic scheme which has been 

found numerous practical applications like on-line credit card transactions, confidential contract signing and 

the protection of digital evidence, etc. In this paper, we propose a new CAE scheme based on the bilinear 

square Diffie-Hellman problem. The proposed scheme is proved secure against adaptive chosen-plaintext 

attacks (CPA2) and adaptive chosen-message attacks (CMA) in the random oracle mode. Compared with 

previous schemes, ours not only provides better functionalities, but also has provable security. 
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1. Introduction 

In 1994, Horster et al. [1] introduced an authenticated encryption (AE) scheme simultaneously 

combining the functions of digital signature and public key encryption. That is, the requirements of 

authenticity and confidentiality [2] are both satisfied. In such a scheme, a signer can produce an 

authenticated ciphertext while only a designated recipient having the corresponding private key can decrypt 

it and verify the embedded signature. Yet, when a designated recipient encounters the situation of later 

repudiation, he cannot convince anyone of signer’s dishonesty. To deal with the dispute, in 1999, Araki et al. 

[3] addressed a variant providing an additional arbitration mechanism. However, Zhang and Kim [4] pointed 

out that Araki et al.’s scheme cannot withstand a universal forgery attack.  

In 2002, Wu and Hsu [5] came up with a convertible authenticated encryption (CAE) scheme allowing 

the designated recipient to solely announce a converted signature. The next year, Huang and Chang [6] 

proposed another enhanced variant. Nevertheless, Lv et al. [7] showed that neither the Wu-Hsu nor the 

Huang-Chang schemes achieve the security requirement of confidentiality. In 2009, Lee et al. [8] further 

introduced the ElGamal-based CAE scheme. In 2012, Lu et al. [9] introduced a convertible multi-

authenticated encryption scheme for generalized group communications. In 2014, an RSA-based CAE 

scheme [10] is also addressed. In this paper, we propose a new CAE scheme from bilinear pairing 

cryptosystems. The proposed scheme is proved secure in the random oracle model. 

2. The Proposed Scheme 

In this section, we present our proposed scheme from bilinear pairings. The used notations are stated as 

Table 1. The proposed CAE scheme consists of the following algorithms: 

Setup(1
k
): On input a security parameter k, the Setup algorithm selects two groups (G1, +) and (G2, ) of 

the same prime order q. Let P be a generator of order q over G1, e: G1  G1  G2 a bilinear pairing and h1: 

{0, 1}
k
  G1  Zq, h2: G1  G1  G2  {0, 1}

k
 and h3: G1  G1 collision resistant hash functions. The 

algorithm outputs public parameters params = {G1, G2, q, P, e, h1, h2, h3}. 
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Reg_U(i): On input an index i, the Reg_U algorithm chooses a private key xi Zq, computes the public 

key Yi = xiP and then further generates the public key certificate Certi by the X.509 standard [11]. 

TABLE I: THE USED NOTATIONS 

(G1, +) Additive group of prime order q 

(G2, ) Multiplicative group of prime order q 

Zq
* multiplicative group of integers modulo q 

x Zq
* element x in set Zq

* 

x  Zq
* sampling element x uniformly in set Zq

* 

|x| bit-length of integer x, also absolute value of x 

 logical operation XOR 

Pr[E] probability of event E occurring 

Sign_M(m, xs, Yv): On input a message m, the public key Yv of the designated recipient and the private 

key xs of signer, the algorithm chooses t  Zq
* to compute R = tP,  = (xs + h1(m, R))

1
R, W = h3(tYv), Z = 

e(xsYv, W), r = m  h2(R, , Z) and then outputs the authenticated ciphertext  = (R, , r). 

Verify_AEC(, xv, Ys): On input an authenticated ciphertext  = (R, , r), the private key xv of 

designated recipient and the public key Ys of signer, the algorithm first computes W = h3(xvR) and Z = e(xvYs, 

W) to recover the message m as m = r  h2(R, , Z) and then checks the redundancy embedded in m. The 

algorithm further verifies the signature by checking whether e(, Ys + h1(m, R)P) = e(R, P). If it holds, the 

message m and its converted signature  = (R, ) is outputted; else, the error symbol ⊥ is returned as a 

result. We prove that the equality works correctly. From the left-hand side of it, we have e(, Ys + h1(m, R)P) 

= e((xs + h1(m, R))
1

R, Ys + h1(m, R)P) = e((xs + h1(m, R))
1

R, (h1(m, R) + xs)P) = e(R, P) which leads to the 

right-hand side of it. 

3. Security Proof and Comparison 

In this section, we first state the underlying security assumption and prove the security of our scheme. 

Bilinear Square Diffie-Hellman Problem; BSDHP: Given an instance (P, A, B)  G1 where P is a 

generator, A = aP and B = bP for some a, b  Zq
*, compute e(P, P)a2b  G2. 

Bilinear Square Diffie-Hellman (BSDH) Assumption: For every probabilistic polynomial-time 

algorithm A, every positive polynomial Q() and all sufficiently large k, A can solve the BSDHP with the 

advantage at most 1/Q(k), i.e., Pr[A(P, aP, bP) = e(P, P)a2b; a, b  Zq
*, P, aP, bP  G1]  1/Q(k). The 

probability is taken over the uniformly and independently chosen instance and over the random choices of A. 

Theorem 1. (Proof of Confidentiality) The proposed CAE scheme is secure against adaptive chosen-

plaintext attacks (CPA2) in the random oracle model if there exists no probabilistic polynomial-time 

adversary that can break the BSDHP with non-negligible advantage. 

Proof: Suppose that a probabilistic polynomial-time (PPT) adversary A can break our scheme with non-

negligible advantage  under the adaptive chosen-plaintext attack after marking at most qhi
 hi (for i = 1 to 3), 

qReg_U Reg_U and qSign_M Sign_M queries. Then we can construct another algorithm B to obtain e(P, P)a2b by 

taking the (P, aP, bP)-BSDHP instance as inputs. In this proof, B simulates a challenger to A.  

Setup: B runs the Setup(1
k
) algorithm and sends public parameters params = {G1, G2, q, P, e} to A. 

Phase 1: A issues the following kinds of queries adaptively: 

 h1(m, R) oracle: B chooses v1 R Zq, adds the entry (m, R, v1) into h1-list and returns v1 as a result. 

 h2(R, , Z) oracle: B first searches the h2-list for an matched entry; else, B seeks the form (R, , 

NULL, v2) and then replaces NULL with Z. Otherwise, B chooses v2 R {0, 1}k, adds the entry (R, , 

Z, v2) into h2-list and returns v2 as a result. 

 h3(tYv) oracle: B chooses v3 R G1 and adds the entry (tYv, v3) into h3-list. Finally, B returns v3 as a 

result. 
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 Reg_U query i: If i = IDs, B returns (Ys = aP, Certs). If i = IDv, B returs (Yv = bP, Certv). Otherwise, 

B runs Reg_Ui and then returns (Yi, Certi) to A.  

 Sign_M query m, Yi, Yj: If Yi  aP, B returns Sign_M(m, xi, Yj). When Yi = aP, B chooses t, v1 R 

Zq and  v2 R {0, 1}k, computes  = dP, r = m  v2 and R = d(aP) + v1dP, adds the entry (m, R, v1) 

into h1-list and the entry (R, , NULL, v2) into h2-list. Then the ciphertext  = (R, , r) is returned to 

A. 

Challenge: A generates two messages, m0 and m1, of the same length. B flips a coin  ← {0, 1} and 

chooses t, v1 R Zq ,  *R G1 and v2 R {0, 1}k, computes r* = m  v2 and R* = tP and adds the entry (t(bP), 

aP) into h3-list and the entry (R*, *, NULL, v2) into h2-list. The ciphertext * = (R*, *, r*) is then 

delivered to A as a target challenge. A can make new queries as those stated in Phase 1. 

Output: Finally, B randomly chooses an entry of h2-list and outputs Z as a correct answer to the BSDHP. 

Analysis of the game: To win the game with a non-negligible advantage, A might attempt to decrypt the 

ciphertext * = (R*, *, r*) and recover m. Since B sets h3(tYv) = h3(xvR*) = aP and implicitly defines h2(R*, 

*, Z*) = v2 where Z* = e(xvYs, W) = e(P, P)a2b, B has a non-negligible advantage to solve the BSDHP on 

condition that A makes an h2(R*, *, Z*) oracle query in phase 2. The probability that A guesses the correct 

random value without asking an h2 oracle is not greater than 2k, i.e., the probability that Z* is in the h2-list is 

not less than (  2k). Since B randomly chooses an entry from the h2-list and outputs Z as the answer, we 

have Pr[Z = Z*] = qh2

1. Consequently, B can solve the BSDHP with a non-negligible advantage (qh2

1)(  

2k) in polynomial-time. 

Theorem 2. (Proof of Unforgeability) The proposed CAE scheme is secure against existential forgery 

on adaptive chosen-message attacks (CMA) in the random oracle model if there exists no probabilistic 

polynomial-time adversary that can break the BSDHP with non-negligible advantage. 

Proof: Suppose that a PPT adversary A can break the proposed scheme with non-negligible advantage  

under the adaptive chosen-message attack after making at most qhi
 hi (for i = 1 to 3), qReg_U Reg_U and qSign_M 

Sign_M queries. Then we can construct another algorithm B to obtain e(P, P)a2b by taking the (P, aP, bP)-

BSDHP instance as inputs. In this proof, B simulates a challenger to A.  

Setup: B runs the Setup(1k) algorithm and sends public parameters params = {G1, G2, q, P, e} to A. 

Phase 1: A adaptively makes new queries as those defined in Theorem 1. Note that in the j-th h3(tYv) 

oracle query where j  qh3
, B directly returns Wj = aP. 

Forgery: A outputs a forged authenticated ciphertext * = (R*, *, r*) for some m*. 

Output: Finally, B randomly chooses an entry of h2-list and outputs Z as a correct answer to the BSDHP. 

Analysis of the game: If A computes Z* with the j-th result of h3(tYv) oracle query, i.e., Z* = e(xsYv, Wj) 

= e(xsYv, aP) = e(P, P)a2b and the forged authenticated ciphertext * = (R*, *, r*) is valid, the value Z* 

should be kept in some entry of the h2-list when A makes an h2(R*, *, Z*) oracle query. The probability that 

A guesses the correct random value without asking an h2 oracle is not greater than 2k, i.e., the probability 

that Z* is in the h2-list is not less than (  2k). Since B has set the j-th h3(tYv) oracle query to be aP and 

randomly outputs Z from some entry of the h2-list as the answer, we obtain Pr[Z = Z*] = 1/qh2
 and Pr[W = Wj] 

= 1/qh3
. Therefore, the advantage to solve the BSDHP is (  2k)(qh2

qh3
)1.  

We compare the proposed scheme with some previous ones including AUI [3], Sek [12] and WH [5] 

schemes. Detailed comparisons in terms of functionalities and security are demonstrated as Table 2. 

4. Conclusions 

CAE schemes have played an important role in e-commerce and the protection of digital evidence, etc. 

In the literature, we proposed a new CAE scheme based on the bilinear square Diffie-Hellman problem. 

Unlike previous works which only provide heuristic security proofs, we formally prove that the proposed 

scheme is secure in the random oracle mode. When a later dispute occurs, the designated recipient can solely 

reveal the converted signature to convince any third party of the signer’s dishonesty. Also, we still preserve 

the merit that the signature conversion process takes no extra efforts. With better functionalities and the 

provable security, we claim that the proposed scheme has crucial benefits to practical applications. 
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TABLE II: COMPARISONS OF THE PROPOSED AND PREVIOUS SCHEMES 

Item & Scheme AUI Sek WH Ours 

Non-interactive conversion process     

Unforgeability/Non-repudiation/No conversion cost     

Confidentiality & Forward secrecy     

Provable security     
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