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Abstract. E-commerce is a highly competitive and constantly growing market. On-line retailers need to 
compare their product offers with those of their competitors in order to remain competitive. Due to the large 
range of product offers on the Web and the fact that internet prices are adjusted on a daily basis or even more 
frequently the manual comparison of on-line product offers is a very time consuming task. Therefore, on-line 
retailers prefer the use of automated tools for performing that work. There are many existing ready-to-use 
software tools and on-line services from price comparison websites to market intelligence tools, but those 
tools still require a greater effort for the configuration of the tool or the comparison of the offers. The 
contribution of this paper is a Web application to automatically identify, extract and compare the product 
offers of the own e-shop with those of defined competitors. The specialties of the presented Web application 
are its degree of automation and the little effort for configuration. 

Keywords: web mining, web data extraction, e-commerce. 

1. Introduction 
Europe’s e-commerce is a competitive and constantly growing market. It’s turnover in 2014 raised by 

16.3% to 363.1 billion Euros. There are 264 million e-shoppers and an estimated amount of 645,000 on-line 
retailers in Europe [1]. As determined in [2] it is very important for e-shoppers to find the lowest price on-
line. Thus, knowing the prices of the competitors and adjusting the own prices is crucial for on-line retailers 
in order to remain successful.  

Since on-line prices are updated daily or even more often as depicted in [3] and in consideration of the 
large number of European e-shops, which offer a vast array of different products, to monitor the competitors' 
prices manually is a hard and time consuming task. Hence, on-line retailers need the support of software 
tools to be able to manage this challenge. There are several existing software tools and on-line services as 
price comparison websites or market intelligence suites for the monitoring and analysis of competitors' prices 
as well as for the comparison of prices, but these tools still need much effort for their configuration or to 
perform the product and price comparison. In this paper we introduce a novel Web application for the 
collection, monitoring and comparison of the own products and prices as well as those of defined 
competitors. The presented application uses a fully-automated approach to perform all necessary tasks from 
product identification within the on-line shops to product attribute extraction and the comparison of product 
offers. 

2. System Requirements 
In the following subsections the non-functional as well as the functional requirements for the Web 

application for the collection and comparison of on-line product offers are derived. 
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2.1. Non-Functional Requirements 
In consideration of the current market situation of the European e-commerce with regard to the large 

number of e-shoppers and on-line retailer in Europe, the existing cross-border shopping and the diversity of 
the most popular product categories the following non-functional requirements can be derived: 

1. Since there is an estimated amount of 645,000 on-line retailers on the European market as 
depicted in [1] and on-line prices are updated daily or even more frequent [3] the system needs 
to be completely automated. 

2. As shown in [2] the top-selling product categories are very diverse, therefore the application 
should be product domain independent. 

3. Considering the huge amount of e-shops in Europe [1] the system needs to be source 
independent in order to be able to collect and analyse product offers of arbitrary e-shop websites. 

2.2. Functional Requirements 
To be able to automatically identify, extract and compare the product offers of arbitrary e-shop websites 

the system needs to offer the following functions: 

1. Product page detection: Detection of all Web pages within an e-shop website containing product 
records. 

2. Product record detection: Identification and extraction of all product records within a Web page. 
3. Product attribute extraction and assignment: Identification and extraction of product attributes as 

e.g. product name, product image or product price within a product record and the assignment of 
the extracted attribute value to a defined product property for further processing. 

4. Product resolution: Matching of identical and similar product offers referring the same real-
world product. 

3. Related Work 
There are various existing software tools and services for the comparison of prices and products of e-

shops on the market. Additionally, there exist on-line market places to master the whole task or to handle 
specific subtasks. Furthermore, there are several research approaches dealing with that challenge. These tools, 
services and scientific approaches will be described in the following paragraphs. 

3.1. Comparison Shopping Services 
Comparison shopping services offer easy-to-use interfaces to search for products and prices. Some of the 

most popular comparison shopping engines are Google Shopping 1 , Shopzilla 2  and PriceGrabber 3  [4]. 
Comparison shopping services are Web-based applications which collect and aggregate on-line offers for a 
specific product from different e-shop websites. Thus, users can search for the on-line offers for a specific 
product quoted by various e-shops by using a comparison shopping service instead of searching for the offers 
on each single e-shop website [5]. Additionally, those services support users through ranking the result list of 
product offers according to specific attributes the users can select as e.g. price or popularity. There are two 
different technologies comparison shopping services use for the collection of product offer data [5]: 

1. Data wrapping: The data is collected through data wrappers which are software programs to 
collect, to structure and to store Web data in an automated manner. 

2. Data feeding: Vendors directly feed their product and price data into the database of the 
comparison shopping engine, e.g. through a Web form or an Application Programming Interface 
(API). 

Detriments of the use of comparison shopping services for comparing a larger set of product offers for 
commercial purposes are (1) the limitation of sources of the price comparison services as the services only 

1 http://www.google.com/shopping 
2 http://www.shopzilla.com/ 
3 http://www.pricegrabber.com/ 
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include offers of a limited set of e-shops and (2) the effort to perform searches for each product as well as for 
the extraction and further processing of the result data. 

3.2. Web data Extraction Services 
Web data extraction services as import.io4 or kimono5 are Web-based software applications to extract 

data directly from websites. Those tools usually offer an easy-to-use Web interface like a Web browser plug-
in in order to define the information to be extracted directly within the website e.g. through marking it in the 
browser. The resulting data is typically offered in the form of a comma-separated values (CSV) sheet or a 
JavaScript Object Notation (JSON) file which can be downloaded after the automated data extraction. The 
major advantage of such Web-based services is the ability to extract actual data directly from the Web 
without the need of programming skills. The main disadvantage is the huge effort to configure the service for 
each website. 

3.3. Price and Market Intelligence Tools 
Price and market intelligence tools and services offer a large set of features as e.g. price monitoring and 

comparison or graphical and tabular data reports. Those tools include a huge set of connected e-shops and e-
shop data within their databases. Additionally, the providers of those services promise a fast integration of 
new required e-shops. Most price and market intelligence services are created in the form of a cloud solution, 
thus they are ready-to-use and do not need to be integrated into the own information technology (IT) 
infrastructure, but they need to be connected to the own e-commerce platform, pricing system or Enterprise 
resource planning (ERP) system. Examples for such tools are price2spy6 and Prisync7. Price Intelligence is a 
cloud service which offers a completely automated matching of products, but it needs to be integrated into 
the own e-commerce platform or pricing system. Prisync does not require any integration but it needs the 
configuration of the product URL for each competitor and for each product. The service price2spy can 
automatically match products based on a unique identifier (Automatch), for products not having a unique 
identifier the matching needs to be done manually by the user. 

3.4. Product and Price APIs 
Product and price APIs like priceAPI.com8 and Semantics39 offer real-time data of products, prices and 

competitors through an API. The data comes from comparison shopping websites, on-line market places and 
directly from merchants. Products and competitors can be searched by several attributes as category or 
branch. The users can integrate the data by connecting their systems to the API. Hence, the use of such APIs 
requires some programming skills as well as some effort for the programming. 

3.5. Scientific Approaches 
The Lixto research project which initially started research in developing a logic-based extraction 

language and a tool for visually generating software programs to extract data from websites (Wrappers). That 
work is described in [6]-[8]. Currently, the scope of the Lixto project has been extended to additional 
research in the field of fully automated and unsupervised Web data extraction [9]. The supervised work of 
the Lixto project focuses on data extraction from deep Web pages which includes the challenge of form 
filling and the navigation on Web pages. The unsupervised research focuses on the automated detection of 
websites including relevant information about a specific subject, automated navigation among the links on 
the identified websites and the extraction of data of the most important pages within these pages which are 
presented within tables. A major advantage of the supervised approach of the Lixto project is the possibility 
to collect data behind Web forms (deep Web data) which is necessary to access service offer data like e.g. 
rental car offers or flight offers. However, the major disadvantage of that approach is the huge effort for the 
configuration of the tool for each website which shall be tapped. Other detriments are the need to clean and 

4 https://import.io/ 
5 https://www.kimonolabs.com/ 
6 http://www.price2spy.com/en/home.html 
7 http://www.prisync.com/ 
8 https://www.priceapi.com/ 
9 https://www.semantics3.com/ 
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integrate the collected data as well as the necessity of entity resolution to be able to e.g. compare product 
prices. The unsupervised approach of the Lixto project is only able to extract data from table structures and it 
is just adequate for use cases where a precise data extraction is not required. Additionally, that approach does 
not support the assignment of the extracted attribute to a specific meaning as e.g. a particular product 
attribute. Moreover, it does not provide an entity resolution, which is required for a product and price 
comparison. 

There are also scientific approaches dealing with a subtask of e-commerce data mining and analyses as 
on-line product data extraction or product resolution. Research approaches for the extraction and structuring 
of product descriptions from e-shop websites can be found in [10]-[19]. 

4. Approach 
The approach was derived from the requirements presented in Section 2. Figure 1 shows the process of 

data collection, data processing and data analysis and the intermediate results of each process step as well as 
the required input and the resulting output of the approach. The process is separated into two parts: (1) 
product data extraction and (2) product resolution. 

 
 

Fig. 1: Process of product and price data extraction and product resolution. 
 

The first round of the process differs from the following rounds as in the first round required input data 
for the subsequent rounds are collected. The necessary input for round 1 is an arbitrary URI of the e-shop, 
which products shall be compared with the competitors' products. In that round the approach takes the URI 
as input and detects the page domain within the URI in order to identify the start page of the website. After 
the detection of the start page the e-shop website is crawled until its 3rd level in order to collect all links 
which are available until level 3 of the website. Level 0 is the homepage of the website, level 1 pages are 
pages which can be directly accessed from level 0, level 2 pages are pages which can be accessed by 
following two links from homepage and level 3 pages are pages three links away from homepage. The e-
shop websites are crawled until level 3 to follow the results of an analysis of 50 different e-shop websites. 
These results have shown that 76% of the analysed websites had product lists on level 0, 96% presented 
product lists on level 1, 74% included lists of products on level 2 and still 12% had product lists on level 3. A 
more detailed description of our analysis is presented in [20]. After the crawling each Web page referenced 
by the collected URIs of the e-shop website is visited and checked for the occurrence of product records. 
Each identified product record is extracted and further processed by searching for the following product 
attributes within the product records: (1) product name, (2) product image, (3) link to the product image, (4) 
link to the detail page of the product, (5) actual product price, (6) regular product price, (7) currency of 
prices and (8) product units as weight or volume information (e.g. 100 g or 50 ml). The results of that step 
are presented to the users. The users can select the products from the list of the collected products for which 
they want to monitor the own prices and the competitors' prices. Round 1 is completed after the product 
selection.  
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The further rounds of the approach require the following input: (1) the e-shop URI (same as for round 1), 
(2) the list of selected products from round 1 and (3) the URIs of the competitors to compare the products. 
The crawling step will not be performed each time as it is sufficient to check an e-shop website several times 
a month for the occurrence of new links (but not every day). Thus, in the most cases the process takes the 
already collected URIs and checks each page for the occurrence of product records. Each of the identified 
product records is collected and the product attributes are extracted. These steps are performed for the 
original e-shop website as well as for the e-shop websites of the defined competitors. After the extraction and 
structuring of the product information of these websites the products of the original e-shop are matched with 
products of the competitors' e-shop websites for all product descriptions having a high degree of similarity as 
these product descriptions are expected to represent identical or similar products. In the last step the identical 
and similar products are compared e.g. with regard to their price. The results of the comparison are presented 
to the users. 

5. Application 
The approach described in Section 4 was implemented in a Web application. The design of the 

application is presented in Fig. 2. The system consists of four main components which partially contain 
further modules, two databases and a RESTful application programming interface (API). The application 
was implemented in Python. The database containing the data defined by the users and the clean product data 
as well as the API are located on a Virtual Machine separated from the data collection modules. Hence, the 
first Virtual Machine holds the front-end, the second one the back-end of the system. Both machines are 
Windows 8 systems. 

 

Fig. 2: Design of the web application. 
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5.1. Application Programming Interface (API) 
The Application Programming Interface (API) consists of a RESTful service which is connected to a 

MySQL database containing the user data and clean product data. The interface is running on an Apache 
HTTP Server to enable the communication with the user or an external system. The RESTful service was 
built on the Flask10 micro framework for Python. The RESTful service provides different operations to 
perform the following tasks: (1) to register an e-shop (create account), (2) to create, update and delete 
competitors, (3) to create, update and delete data collection jobs, (4) to retrieve shop, competitor and product 
information and (5) to retrieve collected product data. The data is provided in JavaScript Object Notation 
(JSON). 

5.2. Scheduler 
The frequency for the data collection is defined by the user for each data collection job. A job is 

executed for the first time directly after its creation. The Scheduler checks each job for its last run and its 
frequency for the data collection and executes it on the day of its calculated next run. The Scheduler ensures 
that only a defined number of jobs are executed at the same time. The initial information of a job is stored in 
the clean database and is sent to the back-end where the information to schedule each job is calculated and 
stored by the Scheduler. The Scheduler itself is controlled and started by a Windows task. 

5.3. Controller 
The Controller operates the data collection jobs started by the Scheduler. For this purpose it takes the 

input for a job from the Scheduler, collects all further information from the API and controls the execution 
sequence of the Scraper and the ProductResolver as well as the data transfer between the modules. 

5.4. Scraper 
The Scraper is one of the core modules of the application. It is responsible for the data collection and the 

pre-processing of the product information. To perform those tasks the Scraper controls and executes the 
following sub-modules in a sequential order: (1) Crawler, (2) LightExtractor and (3) SimpleAttributeSnooper. 
5.4.1. Crawler 

The Crawler takes the URI of the e-shop and searches the protocol type, scheme and domain by using 
the python library urlparse in order to find the start page of the e-shop website. Subsequently, it goes to the 
identified start page and extracts all links including the page domain. Then it follows the identified links and 
extracts all links on each visited Web page until level 3 as described in Section 4. The system uses the 
Python module urllib2 to retrieve the Web pages and the Python library BeautifulSoup11 to detect and extract 
the links from each page. 
5.4.2. LightExtractor 

The LightExtractor module identifies and extracts the product records within the Web pages of the e-
shop website. It uses a clustering technique based on the element paths of the HTML elements of the page as 
well as a special filter to find the product records within the Web pages. The algorithm is shown in Fig. 3. 

The Algorithm renders the Web page and adds all styles from external style files. The external styles are 
necessary for the next step to identify the product attributes (see Section 5.4.3). The algorithm runs through 
the elements of the HTML tree of the page whereat it ignores style and script elements (line 1 and 2). All 
other elements are checked by a filter (see line 6) to contain the following elements: (1) at least three child 
nodes, (2) some text, (3) an image element and (4) an anchor tag. Elements including all those contents are 
potential product records. For all elements identified as potential product records the element path is created 
as presented in Fig. 4 (see line 7). The elements are stored to a dictionary which indices are the tag path of 
the corresponding elements in order to cluster elements having the same tag path together (see line 8). The 
system assumes that the cluster which contains the largest number of elements includes the product records 
(see line 10 and 12). A more detailed description of LightExtractor is given in [20]-[21]. 

 

10 http://flask.pocoo.org/ 
11 http://www.crummy.com/software/BeautifulSoup/ 
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Fig. 3: LightExtractor algorithm. 
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if element is not a StyleSheetElement: 

   for parent in element.findParentNodes: 

      if parent is not a StyleElement: 
         element_path =  "/" + parent.tagName + element_path      

      try: 

         element_path += "/" + element.tagName + "["  

                 + element.classAttribute + "]" 
      except: 

         element_path += "/" + element.tagName 

Fig. 4: Tag path creation for element clustering. 

The implementation of LightExtractor for the described system uses the headless browser mechanize12 to 
retrieve Web pages which do not use Asynchronous JavaScript and XML (AJAX), for Web pages using 
AJAX it utilizes Selenium WebDriver13. In order to be able to use a consistent method for the element 
analysis the module uses BeautifulSoup to parse the HTML tree of the pages instead of the mechanisms 
implemented in mechanize and Selenium WebDriver. 
5.4.3. SimpleAttributeSnooper 

The SimpleAttributeSnooper identifies and extracts the following product attributes from the product 
records which are extracted by LightExtractor: (1) product name, (2) product image, (3) product prices, (4) 
currency of prices and (5) link to the detail page of the product. The approach of the SimpleAttributeSnooper 
is presented in detail in [20], but we will give a short description of its function here, too. The approach 
assumes that the product image is included in the image element within the product record with the largest 
file size. Therefore, the image with the largest file size is extracted as product image. Prices are identified by 
a regular expression. Our analysis of fifty e-shops of 6 different countries and various product domains has 
shown that a product record can contain up to 5 different price types. SimpleAttributeSnooper identifies the 
actual product record by assuming that the price with the largest font size is the actual product price whereas 
the regular product price is expected to be crossed-out. The style information to find the largest font size and 
crossed-out elements is taken from the Cascading Style Sheets (CSS) description of the HTML elements. 
The currency is also extracted by using a regular expression. Currently, SimpleAttributeSnooper is able to 
detect the following currencies: Great Britain Pounds (GBP), Euros (EUR) and United States Dollars (USD). 
The product name is assumed to be included in the link which is the closest to the product image. The 
product name is expected to be found within the alt attribute or title attribute of the product image or the title 
attribute of the anchor element including the text with the largest font size (identified by the CSS 

12 https://pypi.python.org/pypi/mechanize/ 
13 http://selenium-python.readthedocs.org/ 
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information). If this anchor element does not contain a title attribute the text of the element is assumed to be 
the product name. SimpleAttributeSnooper uses BeautifulSoup for parsing the HTML tree of the product 
record elements and CSS21Parser14 is utilised to embed the external CSS of a Web page. The CSS need to be 
embedded in the LightExtractor module before the product records are extracted in order to be able to 
properly allocate the CSS to the corresponding HTML elements. 

5.5. ProductMatcher and ExtendedAttributeSnooper 
Another main module of the application is called ProductMatcher. The main function of this module is 

the matching of the products of the original e-shop with those of its competitors, which is also called product 
resolution. Product resolution is a special variation of entity resolution and stands for the identification of 
product offers which represent the same real-world product [16]. For this step the product are compared 
based on their names (product titles) and units (e.g. weight or volume information). 

The comparison and eventual matching of the product names is based on a pairwise comparison of the 
names of the products to compare. For this puspose the ProductMatcher calculates the string similarity of all 
pairs of product names of the original e-shop and its competitor. The similarity of string pairs is determined 
by the following similarity values. 

1. Intersection of words: This similarity value is the ratio between the amount of common words of 
the strings to compare and the number of words of the longest string. 

2. Maximum 3-gram similarity: The maximum 3-gram similarity is the maximum value of all 
string similarities calculated for all 3-grams of the product names to compare. The similarity of 
the 3-grams is calculated by using the ratio method of difflib.SequenceMatcher15. 

3. Average similarity: The average similarity is the average value of the the intersection of words 
and the maximum 3-gram similarity.  

The described similarity values were created, selected and validated through an experiment on real-world 
data presented in [22]. The matching algorithm pre-processes the name strings of all products by removing 
all charactes which are no letters (also Greek or Spanish letter), numbers or underscores and converts the 
resulting strings to lower case. Following it calculates the introduced similarity values for each pair of 
product names. The product term is the product name of the original e-shop as defined by the user through 
selecting the product name during the first run of the application. As the product name of the original product 
may be changed since the first run the application needs to find it within the collected dataset of product 
descriptions of the original e-shop just like within the extracted dataset of the competitors. Therefore, the 
matching algorithm first compares the product term to all product names of the collected product records of 
the original shop in order to find the actual product description of the original e-shop, and then it compares 
the product name of the identified actual product record of the original e-shop to the product names of all 
collected product records of the competitors. The comparison of product names is performed by calculating 
the similarity values for all pairs of names. The product names with the highest average similarity are 
assumed to be matches. As there are also products which may not have a match within the dataset of product 
records to compare there is a need to define a threshold which has to be exceeded by the similarity values of 
the product name pairs to be a match. The threshold has to be exceeded either by the intersection of words or 
by the maximum 3-gram similarity value. The threshold can be determined by calculating the similarity 
values for a small subset of the real data and by identifying the smallest theshold finding all or a huge 
amount of matches. In [22] we identified the thresholds for the real-world data of two e-shops of the product 
domains clothing and books, the smallest threshold of these domains was 0.68 for the domain books. If for a 
product name there is not another product name with a similarity value for the intersection of words or for 
the maximum 3-gram similarity greater than the threshold value the original product name does not have a 
match within the product names to compare. Otherwise, if there are product names within the product 
records to compare which have a similarity value (intersection of word or maximum 3-gram similarity) 

14 http://pythonhosted.org/tinycss/extending.html 
15 https://docs.python.org/2/library/difflib.html 
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greater than the threshold, the product record with the maximum average similarity is assumed to be a match 
for the original product. 

As there can be several products having the same average similarity value for the original product to be 
able to find the best match there is a need to check and compare further product attributes. For this purpose 
the proposed matching algorithm additionally compares the units such as size and volume information of the 
product descriptions which are assumed to be matches by the comparison of product names in order to find 
the best match. For the comparison of product units we use the approach we have described in [23]. The unit 
extraction is perfomed by the module ExtendedAttributeSnooper. The approach is based on a unit ontology 
we have manually created for the idenfication, extraction and unification of product units as size, volume or 
weith units. The design of the ontology is shown in Fig. 5. 

 

 
 

Fig. 5: Unit ontology for unit data extraction. 
 

The unit ontology provides the following information to identify and extract the units and the 
corresponding values: 

1. Hierachical information of units, e.g. mililitres are smaller than litres. 
2. Common unit abbreviations, e.g. mL for mililires or km of kilimetres. 
3. Regular expressions in order to find and extract units, e.g. 

‘\d+(,|\.)?\d*\s?(in|"|inch|Inch|Zoll)(\s|$|\))’ to find and extract inch 
units and values. 

4. Conversion factors of units to convert the value of a unit into another unit. 
The regular expressions stored for each unit in the unit ontology are selected by a SPARQL query16 and 

used to identify and extract units and the corresponding values within the product names and product short 
descriptions of the product records which probaly are matches and which were identified by the product 
name comparison as well as within those of the original product (identified product of the original e-shop) 
and the product term (selected product name at the first run). All extracted unit values and unit names are 
converted into the smallest unit defined within the unit class of the onology by using the conversion factor 
and unit abbreviations provided by the ontology in order to make them comparable (e.g. 1 litres is converted 
to the key-value pair {‘1000’:’mL’}). The matching algorithm counts the common units of all pairs of 
product records to compare and the product record with the maximum number of intersecting units is 
considered as the best match. For original product which do not have any product having matching units 
within the data records of products which are matches according to the product name comparison the product 
record including the most similar units is considered to be the best match. For this purpose all values of the 
same units of the product pair are compared and the similarity in percent for each unit value pair is calculated. 
Afterwards the average unit similarity is determined by calculating the average of the similarities of all unit 
value pairs. The product having the maximum average similarity is considered to be the best match. 

6. Evaluation 

16 https://www.w3.org/TR/rdf-sparql-query/ 
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The approach was evaluated by performing an experiment on real-word data. The set-up of the 
experiment is described in Section 6.1 and the results of the experiment are shown in Section 6.2. 

6.1. Experimental Set-up 
The approach was evaluated by running the system on real-world data of several e-shops. For this 

purpose there were selected ten e-shops of five of the ten top-selling product categories identified by [2]. For 
each product category two e-shops and the corresponding competitor e-shops had been selected by 
performing the Google search queries shown in Fig. 6 and Fig. 7. 

 
1 <<product category>> shop .<<country code>> 

2 <<product name>> shop .<<country code>> 

Fig. 6: Common Google Search Query to identify shops and competitors. 

The first line of Fig. 6 shows the structure to find an e-shop of a specific product category. The query 
comprises the name of the product category the keyword shop to define that an online shop is searched and a 
dot followed by the code of the country of the searched e-shop. A specific example for a search query to find 
a Greek e-shop of the product category cosmetics is shown in line 1 of Fig. 7. The first Greek e-shop within 
the result list of the Google search is taken for the experiment. 
 
1 cosmetics haircare shop .gr 

2 Tol Velvet Relief Massage Oil 125ml shop .gr 

Fig. 7: Example Search query for the identification of shops and competitors. 

The competitors of the e-shops determined by the Google search of line 1 are searched by another 
Google search structured as presented in line 2 of Fig. 6. The product name in the second Google search is 
the name of a product found within the e-shop identified by the first Google search. This product is randomly 
chosen by browsing the e-shop website. The example in line 2 of Fig. 7 shows a search query to find a 
competitor for the e-shop identified by running the search query in line 1. The search competitor must 
include a product with the name “Tol Velvet Relief Massage Oil” and shall be a Greek e-shop. The first e-
shop which includes the searched product and has the same language as the e-shop from the associated first 
Google search is selected from the result list. Table 1 shows the resulting e-shops and corresponding 
competitors for the experiment. 

Table 1: Table of Resulting e-Shops and Competitors (Experimental Dataset) 
No. Shop Competitor Product category 

1 http://www.e-bookshop.gr/ http://books.gr/ Books 

2 http://www.whsmith.co.uk/ http://www.easons.com/ Books 

3 http://www.hair-care24.de/ http://www.hair-express.de/ Cosmetics & haircare 

4 http://bestpharmacy.gr/ http://efarmakeio.gr/ Cosmetics & haircare 

5 http://www.comtech.de/ http://www.notebooksbilliger.de/ Home electronics 
6 http://www.dabs.com/ http://www.acerdirect.co.uk/ Home electronics 

7 http://www.blockshop.es/ http://www.baddaclothes.com/ Clothing & footwear 

8 https://www.uebervart-shop.de/ http://asphaltgold.de/ Clothing & footwear 

9 http://www.bargainmax.co.uk/ http://www.kidsstufftoys.co.uk/ Toys 

10 http://www.toyplanet.es/ http://www.juguetilandia.com/ Toys 
 

For the experiment there were selected 10 products per product category which can be found within the 
original e-shop and the e-shop of the associated competitor. The system need to find all matching products in 
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the competitor’s e-shop. As a result the system shall return all identified products and related matches in the 
form of structured product descriptions including product name, link to the detail page of the product, 
product price and currency information. 

6.2. Experimental Results 
The results were evaluated by calculating the precision and recall values for the achieved results. The 

precision shows the fraction of correct matches in proportion to incorrect matched products. The recall 
indicates the fraction of correct matches in proportion to possible matches which could not be identified by 
the system. The equations to calculate precision and recall are given in Fig. 8. 

Precision = True Positives / (True Positives + False Positives) 
Recall = True Positives / (True Positives + False Negatives) 

Fig. 8: Equations to calculate precision and recall. 
 
The results the system could achieve for the experimental dataset descried above are shown in Fig. 9. 
 

 
Fig. 9: Experimental results. 

Fig. 9 shows the precision and recall per product category as well as the overall value of all categories. 
The smallest value for precision could be achieved for the category Clothing whereas the lowest recall was 
obtained for the category Home Electronics. The lower recall for the category Home Electronics was caused 
by an inaccuracy of the matching algorithm as the pre-set threshold for the similarity values is too high since 
for the category Home Electronics the string similarity of the product names are not as close as those of the 
other categories. The smaller value for precision the category Clothing was caused by an inadequate 
extraction of some product names from the e-shop website. So, some product names of searched matches 
were not extracted and could not be matched what result in False Positives as other similar product names 
were found and matched. Apart from some identified False Positives and not recognized False Negatives the 
system works fine and the results are very satisfactory. Another smaller issue which can be easily improved 
is the wrong extraction of product prices in the case of prices which are distributed over two tags. Currently, 
the system can only correctly extract the values of prices which are distributed over sibling tags, but some 
prices of the experimental dataset were distributed over a tag and its child tag and such prices could not be 
correctly extracted, but that issue can easily be solved. 

7. Conclusion and Future Work 
This paper introduces a Web application for an automated identification, extraction and comparison of e-

shop websites. First, the system requirements were defined and then an approach for identifying, extracting 
and matching product descriptions was built based on the requirements. The approach was implemented in a 
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Web application which was evaluated by an experiment on real-world data. The experimental results were 
very satisfactory, but some smaller improvements on the algorithm for the attribute extraction have to be 
made in the next version of the system. 
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