
 

 

An Improved Slow-start and Congestion Avoidance Algorithm based on 
TCP Westwood 

Hong Jie1,a, Rui-Qing Wu1,b, Nan Ding1,c 
1School of Electronic Engineering, University of Electronic Science and Technology of China, 

Chengdu, 611731, China 

ajieqionghong@126.com, bdingnan11@163.com, crqwu@uestc.edu.cn 

Keywords: slow-start, congestion avoidance, TCPW, bandwidth ratio. 

Abstract. TCP Westwood (TCPW) utilizes the estimated link available bandwidth by measuring 

and averaging the rate of returning ACKs to appropriately set the slow start threshold (ssthresh) 

parameters, and performs well in wired/wireless networks. However, TCPW still obeys the rules of 

exponential and linear increment of the traditional TCP Reno and cannot adaptively adjust the 

congestion window (cwnd) depending on the network status during the slow-start and congestion 

avoidance phase, leading to more packets losses, frequent retransmissions and lower bandwidth 

utilization. In view of the above problems, this paper presents an improved algorithm TCPW RB, 

the algorithm in the slow-start and congestion avoidance phase, respectively, utilizing the buffer 

queue length and the bandwidth ratio factor to adaptively adjust the increments of cwnd. Simulation 

results show that the proposed algorithm can effectively reduce the packet losses, improve the 

bandwidth utilization and throughput with good fairness and friendliness. 

Introduction 

Along with the diversity of network structure and the complexity of network environment, the 

application of the conventional Transport Control Protocol (TCP) is restrained to a certain extent 

and TCP performance will degrade. There are three approaches to address to implement the 

congestion control: End-to-End (E2E) [1], Cross-layer design [2], Split-connection mechanism [3]. 

E2E only needs to be modified in TCP source side, not requiring the participation of intermediate 

nodes, and gets widespread attention with simple and easy to configure. E2E can be divided into 

methods of three categories: the one mechanism is based on the packet loss (New Reno, Sack) [4], 

the second is based on propagation time delay (TCP Vegas, Veno) [5], and the last is based on the 

mixed design (TCPW) [6]. 

TCPW uses the estimated bandwidth by monitoring the rate of returning ACKs to compute cwnd 

and ssthresh after a packet loss indication (three duplicate acknowledgments received or a coarse 

timeout expiration), to a certain extent, which improves bandwidth utilization and lowers the packet 

loss. However, there are some shortages for TCPW. (i) TCPW still executes the blindly exponential 

growth mode during slow-start phase which may generate a large number of  burst data deepening  

the degree of network congestion. (ii) In congestion avoidance phase, TCPW inherits the linear 

growth of Reno which increases the frequency of network congestion at the statue closer to the 

network congestion and is not conducive to the maintenance of high bandwidth. 

Some studies are carried out to improve TCPW [7-9]. Literature 7 proposes estimation network 

capacity based on RTT to carry on the adjustment to the slow start threshold. Due to the 

measurement of complexity and inaccuracy of RTT, the result is not effective. Literature 8 proposes 

to divide the congestion avoidance phase using the fixed ratio, but the fixed ratio can not correctly 

reflect the network status, resulting large fluctuations. 

In view of the above problems, this paper presents an improved algorithm of TCPW RB, which 

adjusts the growth speed of cwnd according to the estimated queue length during the slow-start 

phase so as to avoid more packet losses and retransmission. In addition, in congestion avoidance 

stage, we adaptively adjust the increments of cwnd based on the bandwidth ratio factor which 
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indirectly reflects network status in real-time, decreasing frequent congestion, maintaining an 

appropriate transmission window, improving the network utilization rate. 

This paper is organized as follows. Section 2 provides a detailed description of TCPW algorithm. 

The improved TCPW RB mechanism depicts on section 3. The results of performance are shown in 

section 4. Finally, Section 5 concludes the paper. 

Overview of TCPW algorithm 

TCPW is a modified version of TCP Reno and specially designed for wireless networks to solve the 

wireless packet loss. The main idea of TCPW is that the sender continuously computes the 

connection bandwidth estimation (BWE) which is defined as the share bottleneck used by the 

connection depending on the value of ACK time interval received at the sender side divided by the 

amount of data confirmed within the interval. Besides it adopts the adaptive bandwidth share 

estimation filtering mechanism for bandwidth samples to make the available bandwidth more 

accurate. When the packet loss occurs due to the random error or congestion, the sender resets the 

sshtresh and cwnd parameter based on the estimated bandwidth so as to derive the best value. The 

packet loss is suspected with a reception of three duplicates ACKs or timeout expiration. The 

pseudocode of TCPW algorithm is the following: 

When (3 dupacks are received) 

If (cwnd>ssthresh) 

/*congestion avoidance phase*/ 

ssthresh=(bwe*RTTmin)/PacketSize; 

cwnd=ssthresh; 

If (cwnd<ssthresh) 

/*slow-start phase*/ 

ssthresh=(bwe*RTTmin)/PacketSize; 

If (cwnd>ssthresh) 

cwnd=ssthresh; 

When (a new ACK is received) 

/*the traditional slow-start algorithm*/ 

If (cwnd<ssthresh)  cwnd=cwnd++; 

/*the traditional congestion avoidance algorithm*/ 

If (cwnd>ssthresh) cwnd=cwnd +1/cwnd; 

where bwe denotes the estimated available bandwidth; RTTmin represents the minimum round-trip 

delay (RTT) observed over the duration of the connection; PacketSize indicates the length of TCP 

segments; 

TCPW which accurately estimates the available bandwidth to reset the value of ssthresh makes it 

possible to make full use of network resources. However, TCPW in the latter part of slow-start 

phase will send too much data packets overrunning the capacity the network at once due to 

exponential growth pattern of cwnd. When the large amount of data flows are injected into the 

network at once,  network could not successfully one-time deal with so many data packets and 

would cause transmission timeout, then increase the possibility of the network congestion. Besides, 

TCPW in congestion avoidance phase still adopts the traditional way of linear growth where cwnd 

will be increased by 1/cwnd every RTT. Due to the state close to the network congestion, the 

mechanism of blindly linear increase is easy to cause the network congestion again quickly, and 

makes the frequency of network congestion, is not conducive to the stable high bandwidth, and 

lowers the network utilization. 

Improved TCPW RB algorithm 

Aimed at the problem that the sudden data flow caused by data fast growth at the latter part of slow-

start stage aggravates network congestion, TCPW RB utilizes the estimated bottleneck buffer queue 
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length to determine the network status, then adjusts or slows down the growth rate of cwnd. During 

the congestion avoidance phase, TCPW RB dynamically adjusts cwnd increase based on bandwidth 

ratio factor. Handling duplicate ACK and timeout keep TCPW algorithm unchanged. 

Enhanced slow-start mechanism. The classical Vegas [5] algorithm adjusts the size of cwnd 

according to the difference between the expected transmission rate and the actual transmission rate 

value. We learn from the idea, to obtain the expected sending rate by cwnd/RTTmin, then use the 

current_bwe estimated by TCPW RB to indicate the actual sending rate. The reason is that the 

estimated bandwidth which is equal to the rate at which data is delivered to the TCP receiver, 

reflects the currently successful transfer rate of the connection, and is more close to the actual state 

of the network. The buffer queue length estimation is shown in Eq.1: 

diff=(cwnd/RTTmin-current_bwe)RTTmin.                                                                                     (1) 

If the value of diff exceeds a certain degree, TCPW RB decreases the growth speed of cwnd in 

the latter part of slow-start phase so as to avoid the sudden flow resulting in more packet losses and 

retransmission. Otherwise, TCPWRB still maintains the exponential increase mode with increasing 

cwnd by 1 MSS (the maximum segment size)  for every ACK received at the sender side.  

Enhanced slow-start algorithm is as follows: 

Step1: When a connection is established, the size of cwnd is initialized to 1MSS and the value of 

ack_flag is set to 1. 

Step2: When a new ACK packet is received at the sender side, TCP sender estimates the BWE, 

that is current_bwe. Then we calculate the diff  by expression (1). 

Step3: TCP sender judges the network statue depending on the buffer queue length to adjust the 

increase pattern of cwnd. 

i) If diff<β, TCP sender increases cwnd by 1MSS for every ACK received; 

ii)If diff>=βand ack_flag==1, TCP sender increases cwnd by 1 MSS and sets the ack_flag to 0. If 

diff>=βbut ack_flag==0, TCP sender keeps the cwnd unchanged and sets the ack_flag to 1. In other 

word, TCP sender increases the cwnd for every other ACK to slow down the growth speed. 

where the β is a constant, experience value is 3. The ack_flag is a flag bit. We use diff to determine 

the network status, when diff<βmeans that the bottleneck queue groups are less and the network is 

not fully utilized. Therefore, the slow-start retains the original exponential growth. If not, it means 

that the network is fully utilized, with each of the two RTT, TCP sender increases cwnd by 1 MSS 

to slow down the growth rate of the cwnd during the latter part of  the slow-start phase. 

Improved congestion avoidance mechanism. Network congestion is a sustained overload the 

network state, and will cause the phenomenon of packet loss, latency, throughput decrease. Based 

on the above factors, the estimated bandwidth in the state of congestion in the network is much 

smaller than the normal circumstances. On the other hand, the packets losses due to the high error 

rate and other reasons for wireless networks is with a chance, which does not affect the RTT, the 

estimated bandwidth compared to the normal condition will not lead to big changes. Therefore 

TCPW RB adaptively adjusts the growth of the size of cwnd by calculating the bandwidth ratio 

factor during the congestion avoidance phase so as to keep the network running pretty close to its 

rated capacity. The bandwidth ratio factor calculated by Eq.2: 

max
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avg

bwe bwe

bwe bwe






                                                                                                                          (2) 
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1 n

avg i

i

bwe bwe
n 

                                                                                                                             (3) 

cwnd=cwnd+1/cwnd(δ+1)                                                                                                            (4) 

where bwe denotes the currently estimated bandwidth, bwemax indicates the maximum bandwidth 

calculated by bwemax=max(bwei)(i=1,2,3...n) which means that the link is made full use of. bweavg is 

the value of  the average bandwidth calculated by Eq.3 which means that the network is stable. 

TCPW RB persistently computes bwe, bwemax and bweavg, utilizes the difference between the 
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estimated currently bandwidth and the average bandwidth in the range of ratio to compute the 

bandwidth ratio factor to real-time adjust the increase of cwnd. The adjustment method is shown by 

the above Eq.4. 

Improved congestion avoidance algorithm is as follows: 

Step1:If cwnd>ssthresh, the slow-start phase is over and the congestion avoidance phase starts. 

TCP sender estimates respectively the value of bwe, bwemax , bweavg for each received ACK by Eq.3; 

Step2: TCP sender calculators the bandwidth ratio factorδ by Eq.2; 

Setp3: TCP sender acquires the current network status depending on the value of δand adjusts 

the size of cwnd by Eq.4; 

Setp4: When a timeout occurs or 3 dupacks are received, TCP sender estimates the bwe to reset 

the value of ssthresh. Then the next procedure goes to the Step1 again. 

From the Eq.2, we can see that the bandwidth ratio factor [ 1,1]    shows the level of the 

currently estimated bandwidth compared with historical changes, and indirectly reflects the state of 

the network. When δ near 1 indicates that the current network is in a better state, cwnd can be 

continually increased by 2/cwnd. Besides when δ approximately 0 notes that the network state is in 

the appropriate state, which retains cwnd by 1/cwnd. However, when δ near -1 indicates that the 

network is in relative congestion state, cwnd should be set appropriately. 

Simulation and Analysis 

In this section, we simulate and evaluate the performance of improved TCPW RB algorithm by NS2, 

compared with TCPW, Reno and Vegas based on these evaluation criteria: throughput, packet 

losses, fairness, and friendliness. 
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        Fig.1: Network topology                                              Fig.2: Throughput with 3% error rate 

 

Fig.1 shows the network topology with a conventional dumbbell structure used for the 

simulation. TCP senders S1 to S2 are connected to the router R1 and TCP receivers D1 to D2 are 

connected to the router R2 respectively via a 100Mbps link with 1ms propagation delay. The link 

between R1 and R2 is the bottleneck link with 5Mbps bandwidth and 35ms propagation delay. The 

size of TCP packet is set to 1400 bytes and the buffer capacity is set to bandwidth delay product. 

Throughput. We establish two TCP connections from the sender S to the receiver D with different 

error rate, ranging 1% from 5% to test the throughput performance by respectively calculating the 

average throughput. The statistical results are shown in Table 1. We can clearly see that the 

throughput of RB is significantly higher than that of Reno, Vegas and TCPW along with error rate 

increase. This is because RB adaptively adjusts the cwnd increment based on the queue length and 

the bandwidth ratio factor which reflect in real-time the current network state. Furthermore, during 

the congestion avoidance phase, RB keeps the network running with a appropriate rate close to the 

capacity based on the dynamics of bandwidth. Fig.2 shows the throughput comparison between 

TCPW and RB under 3% error rate. As seen, the throughput of RB is obviously improved a lot with 

respect to TCPW about 51.7% increments. The reason is that TCPW RB utilities the bandwidth 

factor to adjust the increase of cwnd in real-time in the congestion avoidance phase, and thus 

becomes more aware of the current network state, maintains a steady state, improves the utilization 

of bandwidth.  
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Table 1:  Average throughput (Kbps) vs. error rate 

Error rate Reno Vegas TCPW TCPW RB 

1% 1527.8/1448.6 2135.1/2050.5 2048.5/2049.8 2340.2/2302.3 

2% 974.7/1017.2 1601.3/1469.3 1633.4/1671.0 2136.1/2154.7 

3% 769.7/716.0 1234.0/1138.8 1282.4/1273.3 1931.5/1884.0 

4% 654.0/595.1 910.3/946.2 1046.8/998.0 1611.2/1639.0 

5% 515.8/529.6 852.2/762.4 883.7/844.4 1428.2/1345.7 

 

Packet losses. We do more detailed evaluation by the measurement of the number of the packet 

loss in the network to reflect the detail process of TCP connection. In practice, the number of the 

retransmission packets is equivalent to the packet loss, and we counts the number of retransmission 

packets under different bottleneck capacity. Simulation results are shown in Table 2. It is noted that 

the number of retransmission packets of RB compared to TCPW is decreased in a large extent and 

also the throughput is greatly improved. The number of retransmission packets lowered means the 

bandwidth utilization becomes more effective, as well as the retransmission times reduced means 

the free time is saved, thereby, the bandwidth utilization is improved. 

Table 2: Retransmission packets and throughput (Kbps) vs. link capacity (Mbps) 

Link 

capacity 

TCPW packets 

/retransmission  

RB packets 

/retransmission 

 TCPW 

throughput 

 RB  

throughput 

1 8280/139 8414/46 433.9/453 548.4/380 

2 16676/106 17090/51 919.1/9194 1025.8/873 

3 24929/101 25486/50 1348.1/1413 1622.9/1217 

4 33492/83 33772/31 1855.7/1864 2098.8/1668 

5 41951/85 41939/58 2332.0/2334 2646.8/2033 

 

Fairness and friendliness. Friendliness is a performance index measuring the degree of the 

influence of one TCP connection on the long-term throughput of other coexisting TCP connections. 

We establish two TCP connections with Reno and RB shared a 5Mbps bottleneck link. Table 3 

shows the change of the throughput of TCPW RB and Reno with the error rate from 0% to 5%. 

Even though RB has an advantage over Reno in error-prone environments, Reno connections were 

not starved and keeps friendly. Fig.3 shows the throughput of Reno and RB with 2% error rate, and 

TCPW RB shows the friendliness to Reno. 

Table 3: Throughput (Kbps) vs. error rate 

Error rate 0% 1% 2% 3% 4% 5% 

Reno 2799.9 1335.8 973.1 711.3 584.1 541.5 

TCPW RB 1993.9 2940.0 2523.4 1997.3 1698.8 1450.2 

 

Fairness is another important property of a TCP protocol. Multiple connections should 

accommodate each other and share fairly under the same TCP algorithms.  We calculate the fairness 

index proposed in [10] to evaluate the fairness of the TCP mechanism. In the process of simulation, 

we increase the number of the connections of RB from 2 to 10 and n same TCP connections share 

the n Mbps bottleneck link. Fig.4 shows the comparison of the fairness index of three algorithms 

under the same error rate. Simulation result shows that the fairness of RB is better to TCPW and is 

little lower than the Reno, but the value of fairness index of RB is above 0.96. 
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         Fig.3: Friendliness with 2% error rate                                          Fig.4: Fairness index 

Conclusions 

This paper proposes the improved algorithm called TCPW RB on the basis of TCPW, which 

alleviates the fast growth of the size of cwnd during the latter part of slow-start phase based on the 

estimated buffer queue length, and avoids multiple packet losses caused by the sudden flow. In 

addition, RB utilizes the bandwidth ratio factor to adaptively adjust cwnd increment during the 

congestion avoidance phase and makes more aware of the network state and maintains appropriate 

bandwidth to take full advantage of the link. Simulation results show that TCPW RB not only 

improves the throughput and degrades the packet losses and improves the bandwidth utilization of 

the network, but also maintains good fairness and friendliness compared to TCPW, Reno, Vegas. 
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