

An Improved Slow-start and Congestion Avoidance Algorithm based on
TCP Westwood

Hong Jie1,a, Rui-Qing Wu1,b, Nan Ding1,c
1School of Electronic Engineering, University of Electronic Science and Technology of China,

Chengdu, 611731, China

ajieqionghong@126.com, bdingnan11@163.com, crqwu@uestc.edu.cn

Keywords: slow-start, congestion avoidance, TCPW, bandwidth ratio.

Abstract. TCP Westwood (TCPW) utilizes the estimated link available bandwidth by measuring

and averaging the rate of returning ACKs to appropriately set the slow start threshold (ssthresh)

parameters, and performs well in wired/wireless networks. However, TCPW still obeys the rules of

exponential and linear increment of the traditional TCP Reno and cannot adaptively adjust the

congestion window (cwnd) depending on the network status during the slow-start and congestion

avoidance phase, leading to more packets losses, frequent retransmissions and lower bandwidth

utilization. In view of the above problems, this paper presents an improved algorithm TCPW RB,

the algorithm in the slow-start and congestion avoidance phase, respectively, utilizing the buffer

queue length and the bandwidth ratio factor to adaptively adjust the increments of cwnd. Simulation

results show that the proposed algorithm can effectively reduce the packet losses, improve the

bandwidth utilization and throughput with good fairness and friendliness.

Introduction

Along with the diversity of network structure and the complexity of network environment, the

application of the conventional Transport Control Protocol (TCP) is restrained to a certain extent

and TCP performance will degrade. There are three approaches to address to implement the

congestion control: End-to-End (E2E) [1], Cross-layer design [2], Split-connection mechanism [3].

E2E only needs to be modified in TCP source side, not requiring the participation of intermediate

nodes, and gets widespread attention with simple and easy to configure. E2E can be divided into

methods of three categories: the one mechanism is based on the packet loss (New Reno, Sack) [4],

the second is based on propagation time delay (TCP Vegas, Veno) [5], and the last is based on the

mixed design (TCPW) [6].

TCPW uses the estimated bandwidth by monitoring the rate of returning ACKs to compute cwnd

and ssthresh after a packet loss indication (three duplicate acknowledgments received or a coarse

timeout expiration), to a certain extent, which improves bandwidth utilization and lowers the packet

loss. However, there are some shortages for TCPW. (i) TCPW still executes the blindly exponential

growth mode during slow-start phase which may generate a large number of burst data deepening

the degree of network congestion. (ii) In congestion avoidance phase, TCPW inherits the linear

growth of Reno which increases the frequency of network congestion at the statue closer to the

network congestion and is not conducive to the maintenance of high bandwidth.

Some studies are carried out to improve TCPW [7-9]. Literature 7 proposes estimation network

capacity based on RTT to carry on the adjustment to the slow start threshold. Due to the

measurement of complexity and inaccuracy of RTT, the result is not effective. Literature 8 proposes

to divide the congestion avoidance phase using the fixed ratio, but the fixed ratio can not correctly

reflect the network status, resulting large fluctuations.

In view of the above problems, this paper presents an improved algorithm of TCPW RB, which

adjusts the growth speed of cwnd according to the estimated queue length during the slow-start

phase so as to avoid more packet losses and retransmission. In addition, in congestion avoidance

stage, we adaptively adjust the increments of cwnd based on the bandwidth ratio factor which

2015 The 5
th

International Workshop on Computer Science and Engineering

668

mailto:ajieqionghong@126.com
mailto:bdingnan11@163.com
admin
打字机文本
doi: 10.18178/wcse.2015.04.108

indirectly reflects network status in real-time, decreasing frequent congestion, maintaining an

appropriate transmission window, improving the network utilization rate.

This paper is organized as follows. Section 2 provides a detailed description of TCPW algorithm.

The improved TCPW RB mechanism depicts on section 3. The results of performance are shown in

section 4. Finally, Section 5 concludes the paper.

Overview of TCPW algorithm

TCPW is a modified version of TCP Reno and specially designed for wireless networks to solve the

wireless packet loss. The main idea of TCPW is that the sender continuously computes the

connection bandwidth estimation (BWE) which is defined as the share bottleneck used by the

connection depending on the value of ACK time interval received at the sender side divided by the

amount of data confirmed within the interval. Besides it adopts the adaptive bandwidth share

estimation filtering mechanism for bandwidth samples to make the available bandwidth more

accurate. When the packet loss occurs due to the random error or congestion, the sender resets the

sshtresh and cwnd parameter based on the estimated bandwidth so as to derive the best value. The

packet loss is suspected with a reception of three duplicates ACKs or timeout expiration. The

pseudocode of TCPW algorithm is the following:

When (3 dupacks are received)

If (cwnd>ssthresh)

/*congestion avoidance phase*/

ssthresh=(bwe*RTTmin)/PacketSize;

cwnd=ssthresh;

If (cwnd<ssthresh)

/*slow-start phase*/

ssthresh=(bwe*RTTmin)/PacketSize;

If (cwnd>ssthresh)

cwnd=ssthresh;

When (a new ACK is received)

/*the traditional slow-start algorithm*/

If (cwnd<ssthresh) cwnd=cwnd++;

/*the traditional congestion avoidance algorithm*/

If (cwnd>ssthresh) cwnd=cwnd +1/cwnd;

where bwe denotes the estimated available bandwidth; RTTmin represents the minimum round-trip

delay (RTT) observed over the duration of the connection; PacketSize indicates the length of TCP

segments;

TCPW which accurately estimates the available bandwidth to reset the value of ssthresh makes it

possible to make full use of network resources. However, TCPW in the latter part of slow-start

phase will send too much data packets overrunning the capacity the network at once due to

exponential growth pattern of cwnd. When the large amount of data flows are injected into the

network at once, network could not successfully one-time deal with so many data packets and

would cause transmission timeout, then increase the possibility of the network congestion. Besides,

TCPW in congestion avoidance phase still adopts the traditional way of linear growth where cwnd

will be increased by 1/cwnd every RTT. Due to the state close to the network congestion, the

mechanism of blindly linear increase is easy to cause the network congestion again quickly, and

makes the frequency of network congestion, is not conducive to the stable high bandwidth, and

lowers the network utilization.

Improved TCPW RB algorithm

Aimed at the problem that the sudden data flow caused by data fast growth at the latter part of slow-

start stage aggravates network congestion, TCPW RB utilizes the estimated bottleneck buffer queue

669

length to determine the network status, then adjusts or slows down the growth rate of cwnd. During

the congestion avoidance phase, TCPW RB dynamically adjusts cwnd increase based on bandwidth

ratio factor. Handling duplicate ACK and timeout keep TCPW algorithm unchanged.

Enhanced slow-start mechanism. The classical Vegas [5] algorithm adjusts the size of cwnd

according to the difference between the expected transmission rate and the actual transmission rate

value. We learn from the idea, to obtain the expected sending rate by cwnd/RTTmin, then use the

current_bwe estimated by TCPW RB to indicate the actual sending rate. The reason is that the

estimated bandwidth which is equal to the rate at which data is delivered to the TCP receiver,

reflects the currently successful transfer rate of the connection, and is more close to the actual state

of the network. The buffer queue length estimation is shown in Eq.1:

diff=(cwnd/RTTmin-current_bwe)RTTmin. (1)

If the value of diff exceeds a certain degree, TCPW RB decreases the growth speed of cwnd in

the latter part of slow-start phase so as to avoid the sudden flow resulting in more packet losses and

retransmission. Otherwise, TCPWRB still maintains the exponential increase mode with increasing

cwnd by 1 MSS (the maximum segment size) for every ACK received at the sender side.

Enhanced slow-start algorithm is as follows:

Step1: When a connection is established, the size of cwnd is initialized to 1MSS and the value of

ack_flag is set to 1.

Step2: When a new ACK packet is received at the sender side, TCP sender estimates the BWE,

that is current_bwe. Then we calculate the diff by expression (1).

Step3: TCP sender judges the network statue depending on the buffer queue length to adjust the

increase pattern of cwnd.

i) If diff<β, TCP sender increases cwnd by 1MSS for every ACK received;

ii)If diff>=βand ack_flag==1, TCP sender increases cwnd by 1 MSS and sets the ack_flag to 0. If

diff>=βbut ack_flag==0, TCP sender keeps the cwnd unchanged and sets the ack_flag to 1. In other

word, TCP sender increases the cwnd for every other ACK to slow down the growth speed.

where the β is a constant, experience value is 3. The ack_flag is a flag bit. We use diff to determine

the network status, when diff<βmeans that the bottleneck queue groups are less and the network is

not fully utilized. Therefore, the slow-start retains the original exponential growth. If not, it means

that the network is fully utilized, with each of the two RTT, TCP sender increases cwnd by 1 MSS

to slow down the growth rate of the cwnd during the latter part of the slow-start phase.

Improved congestion avoidance mechanism. Network congestion is a sustained overload the

network state, and will cause the phenomenon of packet loss, latency, throughput decrease. Based

on the above factors, the estimated bandwidth in the state of congestion in the network is much

smaller than the normal circumstances. On the other hand, the packets losses due to the high error

rate and other reasons for wireless networks is with a chance, which does not affect the RTT, the

estimated bandwidth compared to the normal condition will not lead to big changes. Therefore

TCPW RB adaptively adjusts the growth of the size of cwnd by calculating the bandwidth ratio

factor during the congestion avoidance phase so as to keep the network running pretty close to its

rated capacity. The bandwidth ratio factor calculated by Eq.2:

max

avg

avg

bwe bwe

bwe bwe






 (2)

1

1 n

avg i

i

bwe bwe
n 

  (3)

cwnd=cwnd+1/cwnd(δ+1) (4)

where bwe denotes the currently estimated bandwidth, bwemax indicates the maximum bandwidth

calculated by bwemax=max(bwei)(i=1,2,3...n) which means that the link is made full use of. bweavg is

the value of the average bandwidth calculated by Eq.3 which means that the network is stable.

TCPW RB persistently computes bwe, bwemax and bweavg, utilizes the difference between the

670

estimated currently bandwidth and the average bandwidth in the range of ratio to compute the

bandwidth ratio factor to real-time adjust the increase of cwnd. The adjustment method is shown by

the above Eq.4.

Improved congestion avoidance algorithm is as follows:

Step1:If cwnd>ssthresh, the slow-start phase is over and the congestion avoidance phase starts.

TCP sender estimates respectively the value of bwe, bwemax , bweavg for each received ACK by Eq.3;

Step2: TCP sender calculators the bandwidth ratio factorδ by Eq.2;

Setp3: TCP sender acquires the current network status depending on the value of δand adjusts

the size of cwnd by Eq.4;

Setp4: When a timeout occurs or 3 dupacks are received, TCP sender estimates the bwe to reset

the value of ssthresh. Then the next procedure goes to the Step1 again.

From the Eq.2, we can see that the bandwidth ratio factor [1,1]   shows the level of the

currently estimated bandwidth compared with historical changes, and indirectly reflects the state of

the network. When δ near 1 indicates that the current network is in a better state, cwnd can be

continually increased by 2/cwnd. Besides when δ approximately 0 notes that the network state is in

the appropriate state, which retains cwnd by 1/cwnd. However, when δ near -1 indicates that the

network is in relative congestion state, cwnd should be set appropriately.

Simulation and Analysis

In this section, we simulate and evaluate the performance of improved TCPW RB algorithm by NS2,

compared with TCPW, Reno and Vegas based on these evaluation criteria: throughput, packet

losses, fairness, and friendliness.

S1 D1

D2s2

R1 R2

100Mb 1ms

 100Mb 1ms

 100Mb 1ms

 100Mb 1ms

5Mb 35ms

0 20 40 60 80 100 120 140 160 180 200

0

500

1000

1500

2000

2500

Simulation time/s

Th
ro

ug
hp

ut
/K

bp
s

TCPW RB

TCPW

 Fig.1: Network topology Fig.2: Throughput with 3% error rate

Fig.1 shows the network topology with a conventional dumbbell structure used for the

simulation. TCP senders S1 to S2 are connected to the router R1 and TCP receivers D1 to D2 are

connected to the router R2 respectively via a 100Mbps link with 1ms propagation delay. The link

between R1 and R2 is the bottleneck link with 5Mbps bandwidth and 35ms propagation delay. The

size of TCP packet is set to 1400 bytes and the buffer capacity is set to bandwidth delay product.

Throughput. We establish two TCP connections from the sender S to the receiver D with different

error rate, ranging 1% from 5% to test the throughput performance by respectively calculating the

average throughput. The statistical results are shown in Table 1. We can clearly see that the

throughput of RB is significantly higher than that of Reno, Vegas and TCPW along with error rate

increase. This is because RB adaptively adjusts the cwnd increment based on the queue length and

the bandwidth ratio factor which reflect in real-time the current network state. Furthermore, during

the congestion avoidance phase, RB keeps the network running with a appropriate rate close to the

capacity based on the dynamics of bandwidth. Fig.2 shows the throughput comparison between

TCPW and RB under 3% error rate. As seen, the throughput of RB is obviously improved a lot with

respect to TCPW about 51.7% increments. The reason is that TCPW RB utilities the bandwidth

factor to adjust the increase of cwnd in real-time in the congestion avoidance phase, and thus

becomes more aware of the current network state, maintains a steady state, improves the utilization

of bandwidth.

671

Table 1: Average throughput (Kbps) vs. error rate

Error rate Reno Vegas TCPW TCPW RB

1% 1527.8/1448.6 2135.1/2050.5 2048.5/2049.8 2340.2/2302.3

2% 974.7/1017.2 1601.3/1469.3 1633.4/1671.0 2136.1/2154.7

3% 769.7/716.0 1234.0/1138.8 1282.4/1273.3 1931.5/1884.0

4% 654.0/595.1 910.3/946.2 1046.8/998.0 1611.2/1639.0

5% 515.8/529.6 852.2/762.4 883.7/844.4 1428.2/1345.7

Packet losses. We do more detailed evaluation by the measurement of the number of the packet

loss in the network to reflect the detail process of TCP connection. In practice, the number of the

retransmission packets is equivalent to the packet loss, and we counts the number of retransmission

packets under different bottleneck capacity. Simulation results are shown in Table 2. It is noted that

the number of retransmission packets of RB compared to TCPW is decreased in a large extent and

also the throughput is greatly improved. The number of retransmission packets lowered means the

bandwidth utilization becomes more effective, as well as the retransmission times reduced means

the free time is saved, thereby, the bandwidth utilization is improved.

Table 2: Retransmission packets and throughput (Kbps) vs. link capacity (Mbps)

Link

capacity

TCPW packets

/retransmission

RB packets

/retransmission

 TCPW

throughput

 RB

throughput

1 8280/139 8414/46 433.9/453 548.4/380

2 16676/106 17090/51 919.1/9194 1025.8/873

3 24929/101 25486/50 1348.1/1413 1622.9/1217

4 33492/83 33772/31 1855.7/1864 2098.8/1668

5 41951/85 41939/58 2332.0/2334 2646.8/2033

Fairness and friendliness. Friendliness is a performance index measuring the degree of the

influence of one TCP connection on the long-term throughput of other coexisting TCP connections.

We establish two TCP connections with Reno and RB shared a 5Mbps bottleneck link. Table 3

shows the change of the throughput of TCPW RB and Reno with the error rate from 0% to 5%.

Even though RB has an advantage over Reno in error-prone environments, Reno connections were

not starved and keeps friendly. Fig.3 shows the throughput of Reno and RB with 2% error rate, and

TCPW RB shows the friendliness to Reno.

Table 3: Throughput (Kbps) vs. error rate

Error rate 0% 1% 2% 3% 4% 5%

Reno 2799.9 1335.8 973.1 711.3 584.1 541.5

TCPW RB 1993.9 2940.0 2523.4 1997.3 1698.8 1450.2

Fairness is another important property of a TCP protocol. Multiple connections should

accommodate each other and share fairly under the same TCP algorithms. We calculate the fairness

index proposed in [10] to evaluate the fairness of the TCP mechanism. In the process of simulation,

we increase the number of the connections of RB from 2 to 10 and n same TCP connections share

the n Mbps bottleneck link. Fig.4 shows the comparison of the fairness index of three algorithms

under the same error rate. Simulation result shows that the fairness of RB is better to TCPW and is

little lower than the Reno, but the value of fairness index of RB is above 0.96.

672

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

3500

4000

Simulation time/s

T
h
ro

u
g
h
p
u
t/

K
b
p
s

TCPW RB

Reno

2 3 4 5 6 7 8 9 10

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Num of connection

F
a
ir
 i
n
d
e
x

TCPW RB

Westwood

Reno

 Fig.3: Friendliness with 2% error rate Fig.4: Fairness index

Conclusions

This paper proposes the improved algorithm called TCPW RB on the basis of TCPW, which

alleviates the fast growth of the size of cwnd during the latter part of slow-start phase based on the

estimated buffer queue length, and avoids multiple packet losses caused by the sudden flow. In

addition, RB utilizes the bandwidth ratio factor to adaptively adjust cwnd increment during the

congestion avoidance phase and makes more aware of the network state and maintains appropriate

bandwidth to take full advantage of the link. Simulation results show that TCPW RB not only

improves the throughput and degrades the packet losses and improves the bandwidth utilization of

the network, but also maintains good fairness and friendliness compared to TCPW, Reno, Vegas.

Acknowledgements

The research work was supported by the Fundamental Research Funds for the Central Universities

Project No. ZYGX2012J020.

References

[1] Fu C P, Liew S C. TCP Veno: TCP enhancement for transmission over wireless access networks.

IEEE Journal of Selected Areas in Communications, 21(2), pp. 216-228. (2003).

[2] Katabi D, Handley M, Rohrs C. Congestion control for high bandwidth-delay product

networks[C]//ACM SIGCOMM Computer Communication Review. ACM, 32(4), pp. 89-102.

(2002).

[3] Chockalingam A, Zorzi M, Tralli V. Wireless TCP performance with link layer

FEC/ARQ[C]//Communications, ICC'99 IEEE International Conference on. IEEE, 2, pp. 1212-

1216. (1999).

[4] Beomjoon Kim, Dongmin Kim, and Jaiyong Lee, Lost Retransmission Detection for TCP

SACK, IEEE COMMUNICATIONS LETTERS, VOL. 8, NO. 9. (2004).

[5] Samios C B, Vernon M K Modeling the throughput of TCP Vegas. ACM SIGMETRICS

Performance Evaluation Review, 31(1), pp.71-81. (2003).

[6] Gerla M, Sanadidi M Y, Wang R, et al. TCP Westwood: Congestion window control using

bandwidth estimation[C]//Global Telecommunications Conference, GLOBECOM'01. IEEE, 3,

pp. 1698-1702. (2001).

[7] Geethu Wilson, Robin Cyriac An Enhancement to TCPW BBE by Modifying the Bandwidth

Estimation Using Modifieed EWMA International Journal Of Advanced Research in Computer

Science and Software Engineering (2012).

[8] Hagag S, El-Sayed A. Enhanced TCP Westwood Congestion Avoidance Mechanism (TCP

WestwoodNew). International Journal of Computer Applications, 45. (2012).

673

[9] Lan K, Sha N. A CMT congestion window updates mechanism based on TCP

Westwood[C]//Mechatronic Science, Electric Engineering and Computer (MEC), International

Conference on. IEEE, pp. 2119-2122. (2011).

[10] Jain R, Chiu D M, Hawe W R. A quantitative measure of fairness and discrimination for

resource allocation in shared computer system. Eastern Research Laboratory, Digital

Equipment Corporation. (1984).

674

