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Abstract. OpenMP  has been designed as a programming model for taking advantage of multi-core 

architecture to do parallel programming, in this paper  we present a new platform for multi-core 

hard real time system, by getting the advantage of OpenMP parallel programming to design 

OpenMP unit in hard real time system to be alternative for the GPU in free GPU systems; where 

this platform divided into three parts; first: clustering the multi-core-shared resources, second; 

constructing the OpenMP unit from the available cores, and third; designing the mechanism which 

govern the OpenMP unit with whole cores and shared resources. The performance of this platform 

compared it with classical multi-cores platform with MPCP locking protocol to support this 

protocol by the new design.  

Introduction  

Nowadays, Quad-core, multi-core & GPUs have already become the standard for both workstations 

and high performance computers. These systems use aggressive multi-threading so that whenever a 

thread is stalled, waiting for data, the thread can efficiently switch to execute another thread. 

Achieving good performance on these modern systems requires explicit structuring of the 

applications to exploit parallelism and data locality [11].  Programming Interface (API) such as 

OpenMP parallel programming, in the other hand multi-GPUs can be interfaced to on-chip 

multicores as efficient accelerators to increase system-level computational performance and 

improve system responsiveness [1, 2]. Multi-core technology offers very good performance and 

power efficiency and OpenMP has been designed as a programming model for taking advantage of 

multi-core architecture [11]. Depends on availability of cores and other workload parameters. This 

paper addresses these issues by supporting parallel programming in the hard real time system as 

substituted for the GPU, where it is done by: first; generating OpenMP parallel programming unit to 

simulate the GPU, and second; by suggesting a mechanism to this unit with similarity of GPU 

execution mechanism.  

Related work 

This paper developed two features: First; organizing the multi-cores-OpenMP-shared resources 

platform, and Second: executing mechanism to the tasks on that platform. Add to that, using the 

locked protocol to acquire shared resources. 

The Multiprocessor Priority Ceiling Protocol (MPCP) [12] which favours priority queuing when 

tasks contend for locks, the Flexible Multiprocessor Locking Protocol (FMLP) [5] which favours 

FIFO queuing instead. Elliott and Anderson [7] also developed the Optimal k exclusion Global 

Locking Protocol (O-KGLP) under global scheduling. Glenn et al.[14] presented two GPU real-

time analysis methods, addressing real world platform constraints, those two methods designed a 

mechanism of mutual exclusive  to execute the tasks with GPU by treating it as shared resource.  

But those methods were used in soft real time system. In this paper would depend real-time 

mechanism could use in hard real time system. Glenn et al.[10] presented a framework for 

managing GPUs in multi-GPU multicore real-time systems, which provides flexible mechanisms 

for allocating GPUs to tasks; enables task state to be migrated among different GPUs, it is also 
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enabled a single GPU’s different engines to be accessed in parallel to the sporadic task model, even 

when GPU drivers are closed-source; and provides budget policing to the extent possible, given that 

GPU access is non-preemptive. This synchronization method depend on clustered CPUs/GPUs to 

CPU clusters and GPUs clusters; to reduce the complexity and migration time. 

Task Model.  A set of n sporadic tasks T = {T1, T2, …, Tn} are scheduled on multi-CPUs- shared 

resources platform that contain m CPUs, p1, p2,…pm .  All task Tasks in T are indexed by decreasing 

order of priorities, so  i < j represents that the priority of Ti is higher than that of Tj.  

Shared Resources(SRs). Tasks may share serially reusable resources (such as co-processors, 

I/O ports, or shared data structures, etc.). The task set contains of q local shared resources Φl = {l1, 

l2, …, lq} and  w global shared resources Φg = {g1, g2, …, gw}   Each task Ti is considered to be 

consists of two segments of time: first, non- critical section execution segment contain many jobs 

called N_jobs, calculated by ji

a

j

jobN ,

1

_


. Second, critical section execution segment called 

C_jobs
1
, calculated by  qi

b

q

jobC ,

1

_


,  where: 

a  is number of non-critical execution segments of Ti. 
b is number of critical section execution segments of Ti. 
 

 
 
 
 

 
 

 
Figure 1: task jobs classifications 

 
Ti : the period of Ti  , Di: the absolute deadline. In this paper supposed that  
Di= Ti , P(T): set of tasks allocated on one processor.  

The WCET of Ti is denoted by: 
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Both the non-critical and critical sections called jobs.

 OpenMP Unit Design. OpenMP (Open Multi-Processing) is an API that supports multi-

platform shared memory multiprocessing programming in C, C++, and Fortran, it does by 

implementation of multithreading, a method of parallelizing whereby a master thread (a series of 

instructions executed consecutively) forks a specified number of slave threads and a task is divided 

among them. The threads then run concurrently, with the runtime environment allocating threads to 

different processors [24].  According that we grouped some of multi-cores to OpenMP units   (if it 

require) where each unit contain at least four processors.  

OpenMP Unit Operations. We simulate the OpenMP unit to be like GPU operation, where 

There are two types of OpenMP operations. Kernel operations; are programs executed by the 

OpenMP unit, and other operations do by CPU host. Figure 2 shows the OpenMP program 

execution sequence, where a program running on a CPU initiates OpenMP unit. At time t1, the CPU 

request to migrate to OpenMP, at t2, the CPU get the acceptance to migrate. The OpenMP start 

executing its kernel at time 3. Finally, the kernel would finish the execution at t4 and request to the 

CPU to migrate back and get the acceptance at t5  and no longer required the OpenMP at time t6. 

The time between t2 and t6 called OpenMP critical section. The OpenMP program execution 

sequence caused mutual exclusive mechanism, it is mean non-preemptive process. 

                                                           
1
 The critical section in this paper all C_jobs could acquire any shared resource except the GPU. 

N_job1 C_l1_job1 N_job2 C_l1_job2 C_l2_job1

Ti
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Fig. 2: OpenMP program execution mechanism sequence 
 

Multi-Core-OpenMPs-SRs platform 

The hybrid Multi-Core-OpenMPs-SRs platform is divided into two parts; the platform design, and 
the scheduling execution mechanism.  

Multi-Core-OpenMPs-SRs platform design. This platform consists of the following sets:  
1. Multi-core system. 
2. Many of shared resources SRs. 
First of all, the above sets should be distributed for at least two clusters, and then constitute the rest 

of platform. Figure 3 shows the platform design. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 3:  Platform design. 
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Cluster Design. Each cluster has multi-cores and shared resources where grouped numbers of 

cores to construct the OpenMP unit. 
where; 
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where; the M refers to maximum numbers of OpenMP units in the system. 

 Let Gj denote the jth hybrid cluster and m=mo+mp, where :  
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 This cluster has not GPU, but with OpenMPs unit would be alternative for GPU. 

 The shared resources would be governed by MPCP protocol.                       

   Cluster Organizations. The proposed cluster organized as   follows: 
C1. To construct OpenMP unit,  it is should has at least four processors, and one cluster may has 

many OpenMP units.. 
C2. In case of CPUs < 8, each cluster at least contains one OpenMP unit. 
C3. Each cluster has one CPU task locator (CPUloc): this allocator is one CPU from the CPUs in 

one cluster which is responsible for allocating the tasks to the OpenMP unit, or allocating the 
jobs to any other CPUs.  

Multi-Core-OpenMPs-SRs scheduling and execution mechanism 

This mechanism give a new scheduling and execution method for hard real time system where this 
method designated that; only the N_jobs could execute by OpenMP unit, and this execution we called 
it acquired.  This mechanism has many rules and it is as follows:  
 

R1. Any N_job released first, own CPU will be CPUloc. Or there are many N_jobs released in the 
same time, the CPU of higher priority job would be CPUloc, and this job would be acquire the 
OpenMP unit. 

R2. Any one of N_jobs or C_jobs in one cluster whenever these jobs issue any request (to release, 
to execute, to acquire the shared resource, or to acquire OpenMP unit), must issue request to 
CPUloc first where this locator would be the responsible for allocating and migrate the N_jobs 
to the OpenMP unit.  

R3. The CPUloc has another responsibility; where it has the decision which job could migrate to 
any CPUs/OpenMP units or still in own CPU, and this decision does in migration unit.  

R4. Any job could execute on its CPU or migrate to another CPU in one cluster in case of its CPU 
is busy (suspend state or busy wait) and the other CPU is free.  

R5. The CPUloc would be in busy-wait state when the GPU acquired by any N_job.  
R6. The CPUloc would be in suspend state when the OpenMP acquired by any N_job. It is mean 

any C_job could executed within suspending time. 
R7. The requests issued to OpenMP unit by CPUloc would be pass in two queues; initially by 

priority queue, and then in FIFO queue. Figure 4 shows the CPUloc structure and its queues.  
R8. Acquiring the local shared resources locked by MPCP protocol. 
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Fig. 4: CPU allocator structure design 

Experimental Work 

This section described the evaluations for the experimental work where it did by two stages: 
implementation stage and simulation stage where the simulation depends on OpenMP performances 
which calculated by the implementation. The simulations evaluate schedulability performance for the 
system.   

 This paper worked on hard real-time schedulability which determined by EDF-schedulability[23] 

which calculated by the following equation:  

                       /)(        
1

1

iiii

n

i

i DperBWCU 




         (5) 

where peri  = Ti .  The non-critical section which acquire the OpenMP unit
2
, divided by 9 

depending on our evaluation in implementation part. We supposed that all N_jobs for all tasks 

would acquire OpenMP kernel for worse case and applied it in equation 5. 

Implementation Setup. To get a precise evaluation, we did some implementations to check the 

performances for the CPU and OpenMP unit, where we did these implantations on Intel® core™ 

i5-2450M CPU@ 2.5 GHz and 4 G RAM. implemented on 64-bit Ubuntu operating system. And 

figure 5 show the CPU and OpenMP performances. This implemented did the convolution for 

(900×900) matrices with different filters size once by CPU sequential methods and the other by 

OpenMP. This CPU generate four thread to implement the OpenMP programing We found the 

OpenMP unit outperformed the CPU in normal case about 9. 

                                                           
2Where we supposed in all experiments the OpenMP unit contains four processors and four threads. 
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Fig. 5: CPU and OpenMP performance 

Experimental setup. Our experiments did by evaluating the ratio of schedulable task sets; where for 

each task set we tested it by three phases: four, six, and eight CPUs plus one OpenMP unit for each 

task set with each phase.  We described factors that affect the schedulability as follows:    

 The total system utilization Ui which represents the work load of the system vary from: 
1. 0.4 to 4 (step 0.2) for four CPUs. 
2. 0.4 to 6 (step 0.4) for six CPUs. 
3. 0.4 to 8 (step 0.4) for eight CPUs. 

 Task periods are generated from [50ms, 1000ms] with uniform distribution. 

 System utilization has been selected cap (0.4,4) in each scenario via four CPUs with one OpenMP 
once again. Tasks had been generated as follows:  
1. Light tasks from 0.01 to 0.4.  
2. Heavy tasks from 0.4 to 0.8. 

Experiments consist of the above parameters and the results of all experiments show a total of 210 
scenarios.  

Priorities are assigned to tasks according to partition EDF [23]. A total number of 3050 task sets are 
generated for each scenario, and were tested using different schedulability algorithms. 
 
Result and Discussion. In this section we compared the performance of our proposal with MPCP 
performance. The proposed method outperforms and other method in all of the scenarios shown in 
figure 6 to figure 8. Each processor contains more than one task, since in figure 6 (a and b); the 
platforms consist of 4CPU- one OpenMP unit-2SRs, the platform shows in figure 6 (c) consists of 
6CPUs-one OpenMP unit -2SR, and the platform shown in figure 6 (d) consists of 8CPUs-one 
OpenMP unit -2SRs.  
1. Figure 6 shows the ratio of schedulable task sets with two critical sections per task. The critical 

section length is 5% WCi, the maximum numbers of shared resources for the set are two. 

 The task utilizations in figure (a) were light utilizations. With increasing the total system 
utilization caused reduce the schedule task sets. Since the performances our proposal 
outperformed clearly on the other and they closed to each other when the total system utilization 
about 2.8. 

 The task utilizations in figure (b) were heavy utilizations. With increasing the total system 
utilization caused reduce the schedule task sets. Since the performances our proposal 
outperformed clearly on the other and they closed to each other when the total system utilization 
about 1.2 first and then diverge and returned to close in 4. 

 The task utilizations in figure (c) were light utilizations for 6CPUs-one OpenMP unit. With 
increasing the total system utilization caused reduce the schedule task sets. Since the 
performances our proposal outperformed clearly on the other event they reached to 6. 
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 The task utilizations in figure (d) were light utilizations for 8CPUs-one OpenMP unit. With 
increasing the total system utilization caused reduce the schedule task sets. Since the 
performances our proposal outperformed clearly on the other and then closed to together in 6.4. 

2. Figure 7 shows the performance of the methods when increasing the length of critical sections; this 
was applied on 4CPU- one OpenMP unit -2SRs with light tasks utilization. The total system 
utilization is 1.2. The scheduled task sets decreased with increasing the length of critical section 
because increasing the blocking time and this effect on the performance of response time for the 
tasks. The increasing of the critical section length start form 5% to 25% step 1. 

3. Figure 8 show the performance of each method with increasing the number of shared resource. This 
was applied on 4CPU-one OpenMP unit and the total system utilization is 1.2, where each critical 
section length is 10% WCi, and the maximum number of shared resources was ten. The scheduled 
task sets decreased with increasing the length of critical section because increasing the blocking 
time and this effect on the performance of response time for the tasks. 

Conclusion and Future Works  

In this paper, we present Multi-Core-OpenMPs-SRs platform, which could be implemented on system 
scheduled by partitioned scheduling, and this is first platform substitute the GPU by OpenMP unit in 
multi-core hard real time system. This platform can solve many of the researchers Fears from the 
closed source GPU and made it easy to use. Our experiments on that platform did for many phases of 
task set with only one OpenMP unit, it was outperform the traditional platform with  well-known 
MPCP protocol, and if increase the number of OpenMP unit, we can get more efficient and utilized 
system. For future work, we will try to implement this policy by designing a kernel can simulate the 
scheduling of this platform by C language program to be online with advantages of this platforms and 
then trying to applying it on a real life application.   
 
 
 
 
 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6:  Performance with increasing total system utilization 
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Fig. 7: Performance with Increasing critical section length 

 
 

Fig. 8: Performance with increasing numbers of shared resource 
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