

Multi-Core-OpenMP-SRs platform in Hard Real Time System

Furkan Rabee1,2, Yong Liao1, Maolin Yang1,Jian Liu1,Ge Zhu1

1School of Information and Software Engineering, University of Electronic Science & Technology of
China (UESTC), China 2006 Xiyuan Ave. 611731, Cheng Du, China

2Computer Science Department, University of Kufa, Najaf , Iraq.

forkanr@yahoo.com, liaoyong@uestc.edu.cn, maolyang@gmail.com.cn

Keywords: Hard real-real time systems; multi-core-OpenMP-SRs platform; OpenMP.

Abstract. OpenMP has been designed as a programming model for taking advantage of multi-core

architecture to do parallel programming, in this paper we present a new platform for multi-core

hard real time system, by getting the advantage of OpenMP parallel programming to design

OpenMP unit in hard real time system to be alternative for the GPU in free GPU systems; where

this platform divided into three parts; first: clustering the multi-core-shared resources, second;

constructing the OpenMP unit from the available cores, and third; designing the mechanism which

govern the OpenMP unit with whole cores and shared resources. The performance of this platform

compared it with classical multi-cores platform with MPCP locking protocol to support this

protocol by the new design.

Introduction

Nowadays, Quad-core, multi-core & GPUs have already become the standard for both workstations

and high performance computers. These systems use aggressive multi-threading so that whenever a

thread is stalled, waiting for data, the thread can efficiently switch to execute another thread.

Achieving good performance on these modern systems requires explicit structuring of the

applications to exploit parallelism and data locality [11]. Programming Interface (API) such as

OpenMP parallel programming, in the other hand multi-GPUs can be interfaced to on-chip

multicores as efficient accelerators to increase system-level computational performance and

improve system responsiveness [1, 2]. Multi-core technology offers very good performance and

power efficiency and OpenMP has been designed as a programming model for taking advantage of

multi-core architecture [11]. Depends on availability of cores and other workload parameters. This

paper addresses these issues by supporting parallel programming in the hard real time system as

substituted for the GPU, where it is done by: first; generating OpenMP parallel programming unit to

simulate the GPU, and second; by suggesting a mechanism to this unit with similarity of GPU

execution mechanism.

Related work

This paper developed two features: First; organizing the multi-cores-OpenMP-shared resources

platform, and Second: executing mechanism to the tasks on that platform. Add to that, using the

locked protocol to acquire shared resources.

The Multiprocessor Priority Ceiling Protocol (MPCP) [12] which favours priority queuing when

tasks contend for locks, the Flexible Multiprocessor Locking Protocol (FMLP) [5] which favours

FIFO queuing instead. Elliott and Anderson [7] also developed the Optimal k exclusion Global

Locking Protocol (O-KGLP) under global scheduling. Glenn et al.[14] presented two GPU real-

time analysis methods, addressing real world platform constraints, those two methods designed a

mechanism of mutual exclusive to execute the tasks with GPU by treating it as shared resource.

But those methods were used in soft real time system. In this paper would depend real-time

mechanism could use in hard real time system. Glenn et al.[10] presented a framework for

managing GPUs in multi-GPU multicore real-time systems, which provides flexible mechanisms

for allocating GPUs to tasks; enables task state to be migrated among different GPUs, it is also

2015 The 5
th

International Workshop on Computer Science and Engineering

629

admin
打字机文本
doi: 10.18178/wcse.2015.04.103

enabled a single GPU’s different engines to be accessed in parallel to the sporadic task model, even

when GPU drivers are closed-source; and provides budget policing to the extent possible, given that

GPU access is non-preemptive. This synchronization method depend on clustered CPUs/GPUs to

CPU clusters and GPUs clusters; to reduce the complexity and migration time.

Task Model. A set of n sporadic tasks T = {T1, T2, …, Tn} are scheduled on multi-CPUs- shared

resources platform that contain m CPUs, p1, p2,…pm . All task Tasks in T are indexed by decreasing

order of priorities, so i < j represents that the priority of Ti is higher than that of Tj.

Shared Resources(SRs). Tasks may share serially reusable resources (such as co-processors,

I/O ports, or shared data structures, etc.). The task set contains of q local shared resources Φl = {l1,

l2, …, lq} and w global shared resources Φg = {g1, g2, …, gw} Each task Ti is considered to be

consists of two segments of time: first, non- critical section execution segment contain many jobs

called N_jobs, calculated by ji

a

j

jobN ,

1

_


. Second, critical section execution segment called

C_jobs
1
, calculated by qi

b

q

jobC ,

1

_


, where:

a is number of non-critical execution segments of Ti.
b is number of critical section execution segments of Ti.

Figure 1: task jobs classifications

Ti : the period of Ti , Di: the absolute deadline. In this paper supposed that
Di= Ti , P(T): set of tasks allocated on one processor.

The WCET of Ti is denoted by:

 __ ,

1

,

1

qi

b

c

ji

a

j

i jobCjobNWC 


 (1)

Both the non-critical and critical sections called jobs.

 OpenMP Unit Design. OpenMP (Open Multi-Processing) is an API that supports multi-

platform shared memory multiprocessing programming in C, C++, and Fortran, it does by

implementation of multithreading, a method of parallelizing whereby a master thread (a series of

instructions executed consecutively) forks a specified number of slave threads and a task is divided

among them. The threads then run concurrently, with the runtime environment allocating threads to

different processors [24]. According that we grouped some of multi-cores to OpenMP units (if it

require) where each unit contain at least four processors.

OpenMP Unit Operations. We simulate the OpenMP unit to be like GPU operation, where

There are two types of OpenMP operations. Kernel operations; are programs executed by the

OpenMP unit, and other operations do by CPU host. Figure 2 shows the OpenMP program

execution sequence, where a program running on a CPU initiates OpenMP unit. At time t1, the CPU

request to migrate to OpenMP, at t2, the CPU get the acceptance to migrate. The OpenMP start

executing its kernel at time 3. Finally, the kernel would finish the execution at t4 and request to the

CPU to migrate back and get the acceptance at t5 and no longer required the OpenMP at time t6.

The time between t2 and t6 called OpenMP critical section. The OpenMP program execution

sequence caused mutual exclusive mechanism, it is mean non-preemptive process.

1
 The critical section in this paper all C_jobs could acquire any shared resource except the GPU.

N_job1 C_l1_job1 N_job2 C_l1_job2 C_l2_job1

Ti

630

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Multiprocessing
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Thread_(computer_science)
http://en.wikipedia.org/wiki/Runtime_environment

Fig. 2: OpenMP program execution mechanism sequence

Multi-Core-OpenMPs-SRs platform

The hybrid Multi-Core-OpenMPs-SRs platform is divided into two parts; the platform design, and
the scheduling execution mechanism.

Multi-Core-OpenMPs-SRs platform design. This platform consists of the following sets:
1. Multi-core system.
2. Many of shared resources SRs.
First of all, the above sets should be distributed for at least two clusters, and then constitute the rest

of platform. Figure 3 shows the platform design.

Fig. 3: Platform design.

 Time t1 t2 t3 t4 t5 t6

Kernel

OpenMP critical section

migration input migration output

CPU

OpenMP migration engine1

OpenMP execution engine

OpenMP migration engine2

l1

l2

lq

CPU 1
T1,T2,Tn

CPU 2
T1,T2,Tn

CPU m
T1,T2,Tn

Migration

Unit

Migration

Unit
CPUloc

Mutual

exclusive

Cluster (G1)

Cluster (G2)

Cluster (Gj)

Semaphore protocolSemaphore protocol
OpenMP program

execution mechanism

OpenMP program

execution mechanism

Mutual

exclusive

OpenMP

Unit

631

Cluster Design. Each cluster has multi-cores and shared resources where grouped numbers of

cores to construct the OpenMP unit.
where;

14




mo

x

x
mo

pop (2)

11

4






M

f

f

mp

x

x
mp

oppP (3)

where; the M refers to maximum numbers of OpenMP units in the system.

 Let Gj denote the jth hybrid cluster and m=mo+mp, where :

1
08








q

z

j
z

lj
m

P

km

j
G

(4)

 This cluster has not GPU, but with OpenMPs unit would be alternative for GPU.

 The shared resources would be governed by MPCP protocol.

 Cluster Organizations. The proposed cluster organized as follows:
C1. To construct OpenMP unit, it is should has at least four processors, and one cluster may has

many OpenMP units..
C2. In case of CPUs < 8, each cluster at least contains one OpenMP unit.
C3. Each cluster has one CPU task locator (CPUloc): this allocator is one CPU from the CPUs in

one cluster which is responsible for allocating the tasks to the OpenMP unit, or allocating the
jobs to any other CPUs.

Multi-Core-OpenMPs-SRs scheduling and execution mechanism

This mechanism give a new scheduling and execution method for hard real time system where this
method designated that; only the N_jobs could execute by OpenMP unit, and this execution we called
it acquired. This mechanism has many rules and it is as follows:

R1. Any N_job released first, own CPU will be CPUloc. Or there are many N_jobs released in the
same time, the CPU of higher priority job would be CPUloc, and this job would be acquire the
OpenMP unit.

R2. Any one of N_jobs or C_jobs in one cluster whenever these jobs issue any request (to release,
to execute, to acquire the shared resource, or to acquire OpenMP unit), must issue request to
CPUloc first where this locator would be the responsible for allocating and migrate the N_jobs
to the OpenMP unit.

R3. The CPUloc has another responsibility; where it has the decision which job could migrate to
any CPUs/OpenMP units or still in own CPU, and this decision does in migration unit.

R4. Any job could execute on its CPU or migrate to another CPU in one cluster in case of its CPU
is busy (suspend state or busy wait) and the other CPU is free.

R5. The CPUloc would be in busy-wait state when the GPU acquired by any N_job.
R6. The CPUloc would be in suspend state when the OpenMP acquired by any N_job. It is mean

any C_job could executed within suspending time.
R7. The requests issued to OpenMP unit by CPUloc would be pass in two queues; initially by

priority queue, and then in FIFO queue. Figure 4 shows the CPUloc structure and its queues.
R8. Acquiring the local shared resources locked by MPCP protocol.

632

Fig. 4: CPU allocator structure design

Experimental Work

This section described the evaluations for the experimental work where it did by two stages:
implementation stage and simulation stage where the simulation depends on OpenMP performances
which calculated by the implementation. The simulations evaluate schedulability performance for the
system.

 This paper worked on hard real-time schedulability which determined by EDF-schedulability[23]

which calculated by the following equation:

 /)(
1

1

iiii

n

i

i DperBWCU 




 (5)

where peri = Ti . The non-critical section which acquire the OpenMP unit
2
, divided by 9

depending on our evaluation in implementation part. We supposed that all N_jobs for all tasks

would acquire OpenMP kernel for worse case and applied it in equation 5.

Implementation Setup. To get a precise evaluation, we did some implementations to check the

performances for the CPU and OpenMP unit, where we did these implantations on Intel® core™

i5-2450M CPU@ 2.5 GHz and 4 G RAM. implemented on 64-bit Ubuntu operating system. And

figure 5 show the CPU and OpenMP performances. This implemented did the convolution for

(900×900) matrices with different filters size once by CPU sequential methods and the other by

OpenMP. This CPU generate four thread to implement the OpenMP programing We found the

OpenMP unit outperformed the CPU in normal case about 9.

2Where we supposed in all experiments the OpenMP unit contains four processors and four threads.

...Job width..

...Job width..
OpenMP

unit

...Job width.. FQ1

FQ2

FQn

Priority

Queue

CPU

loc
Requests MU

To the selected
CPU

MU: migration unit.
FQ: FIFO queue.

633

Fig. 5: CPU and OpenMP performance

Experimental setup. Our experiments did by evaluating the ratio of schedulable task sets; where for

each task set we tested it by three phases: four, six, and eight CPUs plus one OpenMP unit for each

task set with each phase. We described factors that affect the schedulability as follows:

 The total system utilization Ui which represents the work load of the system vary from:
1. 0.4 to 4 (step 0.2) for four CPUs.
2. 0.4 to 6 (step 0.4) for six CPUs.
3. 0.4 to 8 (step 0.4) for eight CPUs.

 Task periods are generated from [50ms, 1000ms] with uniform distribution.

 System utilization has been selected cap (0.4,4) in each scenario via four CPUs with one OpenMP
once again. Tasks had been generated as follows:
1. Light tasks from 0.01 to 0.4.
2. Heavy tasks from 0.4 to 0.8.

Experiments consist of the above parameters and the results of all experiments show a total of 210
scenarios.

Priorities are assigned to tasks according to partition EDF [23]. A total number of 3050 task sets are
generated for each scenario, and were tested using different schedulability algorithms.

Result and Discussion. In this section we compared the performance of our proposal with MPCP
performance. The proposed method outperforms and other method in all of the scenarios shown in
figure 6 to figure 8. Each processor contains more than one task, since in figure 6 (a and b); the
platforms consist of 4CPU- one OpenMP unit-2SRs, the platform shows in figure 6 (c) consists of
6CPUs-one OpenMP unit -2SR, and the platform shown in figure 6 (d) consists of 8CPUs-one
OpenMP unit -2SRs.
1. Figure 6 shows the ratio of schedulable task sets with two critical sections per task. The critical

section length is 5% WCi, the maximum numbers of shared resources for the set are two.

 The task utilizations in figure (a) were light utilizations. With increasing the total system
utilization caused reduce the schedule task sets. Since the performances our proposal
outperformed clearly on the other and they closed to each other when the total system utilization
about 2.8.

 The task utilizations in figure (b) were heavy utilizations. With increasing the total system
utilization caused reduce the schedule task sets. Since the performances our proposal
outperformed clearly on the other and they closed to each other when the total system utilization
about 1.2 first and then diverge and returned to close in 4.

 The task utilizations in figure (c) were light utilizations for 6CPUs-one OpenMP unit. With
increasing the total system utilization caused reduce the schedule task sets. Since the
performances our proposal outperformed clearly on the other event they reached to 6.

0

1

2

3

4

5

6

7

8

9

10

a b c d e f g h i j k l

Normal

OpenMP

symbol
Filter

size

a 3×3

b 6×6

c 9×9

d 12×12

e 15×15

f 18×18

g 21×21

h 24×24

i 27×27

j 30×30

k 45×45

l 60×60

T
im

e
in

 s
ec

o
n

d
 (

s)

Increasing the filter size

634

 The task utilizations in figure (d) were light utilizations for 8CPUs-one OpenMP unit. With
increasing the total system utilization caused reduce the schedule task sets. Since the
performances our proposal outperformed clearly on the other and then closed to together in 6.4.

2. Figure 7 shows the performance of the methods when increasing the length of critical sections; this
was applied on 4CPU- one OpenMP unit -2SRs with light tasks utilization. The total system
utilization is 1.2. The scheduled task sets decreased with increasing the length of critical section
because increasing the blocking time and this effect on the performance of response time for the
tasks. The increasing of the critical section length start form 5% to 25% step 1.

3. Figure 8 show the performance of each method with increasing the number of shared resource. This
was applied on 4CPU-one OpenMP unit and the total system utilization is 1.2, where each critical
section length is 10% WCi, and the maximum number of shared resources was ten. The scheduled
task sets decreased with increasing the length of critical section because increasing the blocking
time and this effect on the performance of response time for the tasks.

Conclusion and Future Works

In this paper, we present Multi-Core-OpenMPs-SRs platform, which could be implemented on system
scheduled by partitioned scheduling, and this is first platform substitute the GPU by OpenMP unit in
multi-core hard real time system. This platform can solve many of the researchers Fears from the
closed source GPU and made it easy to use. Our experiments on that platform did for many phases of
task set with only one OpenMP unit, it was outperform the traditional platform with well-known
MPCP protocol, and if increase the number of OpenMP unit, we can get more efficient and utilized
system. For future work, we will try to implement this policy by designing a kernel can simulate the
scheduling of this platform by C language program to be online with advantages of this platforms and
then trying to applying it on a real life application.

Fig 6: Performance with increasing total system utilization

0

10

20

30

40

50

60

70

80

90

100

0.4 0.6 0.8 1 1.2 1.4 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

4x-OpenMP

4x-MPCP

Total System Utilization

R
at

io
 o

f
sc

h
ed

u
la

b
le

 t
as

k
 s

et
s

(%
)

0

10

20

30

40

50

60

70

80

90

100

0.4 0.6 0.8 1 1.2 1.4 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

4x-OpenMP

4x-MPCP

Total System Utilization

R
at

io
 o

f
sc

h
ed

u
la

b
le

 t
as

k
 s

et
s

(%
)

0

10

20

30

40

50

60

70

80

90

100

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6

6x-OpenMP

6x-MPCP

Total System Utilization

R
at

io
 o

f
sc

h
ed

u
la

b
le

 t
as

k
 s

et
s

(%
)

0

10

20

30

40

50

60

70

80

90

100

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 6.4 6.8 7.2 7.6 8

8x-OpenMP

8x-MPCP

R
at

io
 o

f
sc

h
ed

u
la

b
le

 t
as

k
 s

et
s

(%
)

Total System Utilization

635

Fig. 7: Performance with Increasing critical section length

Fig. 8: Performance with increasing numbers of shared resource

Acknowledgements

This work has been supported in part by the National Natural Science Foundation of China (Grant

No. 61103041), the Fundamental Research Funds for the Central Universities of China (Grant No.

ZYGX2012J070), the PhD student Academic Support Program of UESTC (Grant No.

YBXSZC20131028), the Huawei Technology Foundation (Grant No. ZYGX2012J070), and the

National High-tech R&D Program of China (Grant No. SQ2011GX02D03708).

References

[1] A. Acosta, V. Blanco, F. Almeida, “Towards the dynamic load balancing on heterogeneous

multi-GPU systems,” in IEEE Parallel and Distributed Processing with Applications (ISPA’12),

pp. 646-653,(Jul. 2012).

[2] Z. Ziming, V. Rychkov, A. Lastovetsky, “Data partitioning on heterogeneous multicore and

multi-GPU systems using functional performance models of data-parallel applications,” in IEEE

Cluster Computing (Cluster’12), (Sep. 2012), pp. 191-199.

[3] G. Elliott, J. Anderson, “Globally scheduled real-time multiprocessor systems with GPUs,”

Journal of Real-Time Systems, vol. 48, no. 1,(2012), pp. 34-74.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

4x-OpenMP

4x-MPCP

R
at

io
 o

f
sc

h
ed

u
la

b
le

 t
as

k
 s

et
s

(%
)

Numbers of critical sections

Critical Section Length (%) of WCi

0

10

20

30

40

50

60

70

80

90

100

5% 7% 9% 11% 13% 15% 17% 19% 21% 23% 25%

4x-OpenMP

4x-MPCP

R
at

io
 o

f
sc

h
ed

u
la

b
le

 t
as

k
 s

et
s

(%
)

636

[4] G. Elliott, J. Anderson, “Robust real-time multiprocessor interrupt handling motivated by

GPUs,” in IEEE Euromicro Conference on Real-Time Systems (ECRTS’ 12),(Jul. 2012), pp.

267-276.

[5] Block A, Leontyev H, Brandenburg BB, Anderson JH” A flexible real-time locking protocols

for multiprocessors,” the 13th IEEE Real-Time Computing Systems and Applications,

(2007),pp 47-56.

[6] B. Ward, G. Elliott, J. Anderson, “Replica-request priority donation: a real-time progress

mechanism for global locking protocols,” in IEEE Embedded and Real-Time Computing

Systems and Applications (RTCSA’ 12), (Aug. 2012), pp. 280-289.

[7] G. Elliott, J. Anderson, “An optimal k-exclusion real-time locking protocol motivated by multi-

GPU systems,” Journal of Real-Time Systems, vol. 49, no. 2, pp. 140-170, (2013).

[8] H. Leontyev and J. Anderson. “A hierarchical multiprocessor bandwidth reservation scheme

with timing guarantees. Real-Time Systems,” 43(1):60–92, (September 2009).

[9] Mikael Asberg, Thomas Nolte, and Daniel Hallmans “ Towards using the Graphics Processing

Unit (GPU) for Embedded Systems,” IEEE 17th Conference on Emerging Technologies &

Factory Automation,(2012), pp 1-4.

[10] Glenn A. Elliott, Bryan C. Ward, James H. Anderson” GPUSync: A Framework for Real-

Time GPU Management,” in 34
th

 IEEE Real-Time Systems Symposium (RTSS), (2013), pp

33-44.

[11] Krishnahari Thouti, S.R.Sathe “Comparison of OpenMP & OpenCL Parallel Processing

Technologies” the 30th IEEE Real-Time Systems Symposium, (2009), pp 469-478.

[12] Rajkumar R, Sha L, Lehoczky JP “Real-time synchronization protocols for multiprocessors,”

the 1988 IEEE Real-Time Systems Symposium,(1988), pp 256-269.

[13] Liu CL, Layland JW “Scheduling algorithms for multiprogramming in a hard real-time

environment,” J ACM 20(1) ,(1973), pp 40-61.

[14] Glenn A. Elliott and James H. Anderson “Globally Scheduled Real-Time Multiprocessor

Systems with GPUs,”Journal of Real-Time Systems, vol. 48, no. 1,pp. 34-74, (2012).

[15] Vincent Boyer, Didier El Baz, Moussa Elkihel “Dense Dynamic Programming on Multi GPU,”

in 19th IEEE International Euromicro Conference on Parallel, Distributed and Network-Based

Processing,(2011), 545 – 551.

[16] Maolin Yang, Hang Lei, Yong Liao, Furkan Rabee. “PK-OMLP: An OMLP based k-Exclusion

Real-Time Locking Protocol for Multi-GPU Sharing Under Partitioned Scheduling,” in 11
th

IEEE conference on Embedded computing, (2013).

[17] Shinpei Kato, Karthik Lakshmanan, Aman Kumar, Mihir Kelkar, Yutaka Ishikawa,

Ragunathan (Raj) Rajkumar. “RGEM: A Responsive GPGPU Execution Model for Runtime

Engines,” in 32
nd

 IEEE Real-Time Systems Symposium,(2011), pp 57 – 66.

[18] Al écio P. D. Binotto_ y, Bernardo M. V. Pedrasy, Marcelo G ötz_, Arjan Kuijpery,Carlos E.

Pereira_, Andr´e Storky, and Dieter W. Fellnery. “Effective Dynamic Scheduling on

Heterogeneous Multi/Manycore Desktop Platforms,” in 22
nd

 International Symposium on

Computer Architecture and High Performance Computing Workshops,(2010).

[19] Konstantinos I. Karantasis, Eleftherios D. Polychronopoulos. “Programming GPU Clusters

with Shared Memory Abstraction in Software,” 19
th

 International Euromicro Conference on

Parallel, Distributed and Network-Based Processing,(2011),pp 223 – 230.

637

http://www.informatik.uni-trier.de/~ley/pers/hd/w/Ward:Bryan_C=.html
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Anderson:James_H=.html
http://www.informatik.uni-trier.de/~ley/db/conf/rtss/rtss2013.html#ElliottWA13

[20] Rajkumar R “Real-time synchronization protocols for shared memory multiprocessors,” the

10th Distributed Computing Systems,(1990), pp 116-123.

[21] S. K. Dhall and C. L. Liu, “On a Real-Time Scheduling Problem,” Operations Research, vol.

26, number 1, pp. 127-140, (1978).

[22] Brandenburg BB, Anderson JH “an Implementation of PCP, SRP, D-PCP, M-PCP, and FMLP

real-time Synchronization Protocols in LITMUS,” the 14
th

 IEEE embedded real-time computing

system and application, (2008).

[23] C. L. Liu and J. W. Layland,“Scheduling algorithms for multiprogramming in a hard-real-time

environment,” Journal of ACM, 20(1),pp. 46–61, (1973).

[24] http://en.wikipedia.org/wiki/OpenMP.

[25] OpenCL Programming Guide for the CUDA Architecture. Available from:

http://www.nvidia.com/content/cudazone/download/OpenCL/

638

