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Abstract. In land consolidation, it is very important to construct an effective index system. Land 

data is characteristic of big volume, complex varieties and more indexes. We need select a group of 

good index for some goals of land consolidation according to concrete demand. In this paper, Fuzzy 

Integrals is adopted to finish the feature selection. Fuzzy Integral is a kind of infusion tool based on 

fuzzy measure which can describe the importance of each feature or feature subset. Some 

researchers can obtain the optimal solution for Fuzzy measure using soft computing tools. When the 

Fuzzy integrals can be transformed to a linear equation, L1-norm regularization method is applied 

to solve the linear equation system and find a solution with the fewest nonzero values for fuzzy 

measure. The solution with the fewest nonzero can show the degree of contribution of some features 

or their combinations for decision. This method provides a quick and optimal way to determine the 

land index system for preparing the following land research. 

Introduction 

In land consolidation, the land index system is important for land evaluation. So the selection of 

land indexes affects the results of evaluation and decision model. Currently, many researchers have 

focused on the optimization and selection of land index system. T.L. Saaty proposed an index 

selection method based on the analytic hierarchy process with weight[1]. Then he proposed Least 

Square Method(LSM) and Least Logarithm Square Method(LLSM) for confirming the previous 

weight[2]. But land indexes are very multiple and complicated. It may be related to society, 

economics and ecology. Traditionally, land index system was constructed according to experts’ 

experience. Due to human factors, the evaluation results lost the objectivity and consistency. It is 

too hard to obtain a set of accurate weight in the analytic hierarchy process.  

In this paper, a method based on computational tool-fuzzy measure is proposed for land index 

selection. It can avoid the human factors’ effect and confirm the final index subset objectively. 

Fuzzy measure can represent the importance of index and index combination for decision[3]. We 

can solve the values of fuzzy measure by using L1-Norm method to obtain a sparse vector. Those 

indexes with non-zero fuzzy measures will be kept in final index set. 

This paper is constructed as follows. The introduction has been given in section 1. The fuzzy 

integral model for solving fuzzy measure is given in section2. In next section the land indexes are 

described in detail. Section 4 shows the experiments and results. Conclusions will be drawn in 

section 5. 

Model based on fuzzy measure 

We are given a data set consisting of L  example records, called training set, where each record 

contains the value of a decisive feature, Y , and the value of predictive features nx,,x,x 21 . 

Positive integer L  is the data size. The classifying feature indicates the class to which each 
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example belongs, and it is a categorical feature with values coming from an unordered finite domain. 

The set of all possible values of the classifying feature is denoted by mc,,c,cC 21 , where each 

kc , ,k 1  m,,2 , refers to a specified class. The feature features are numerical, and their values 

are described by an n-dimensional vector, ( )()()( 21 nx,f,x,fxf  ). The range of the vector, a subset 

of n-dimensional Euclidean space, is called the feature space. The jth observation consists of n 

feature features and the classifying feature can be denoted by ))(,),(),(( 21 jnjjj ,Yxfxfxf  , 

L,,,j   2 1  . Before introducing the model, we give out the fundamental concepts as follows. 

Fuzzy Measure. Let nx,,x,xX 21 , be a nonempty finite set of feature features and )X(P  

be the power set of X .  

To further understand the practical meaning of the Fuzzy Measure, let us consider the elements 

in a universal set X as a set of predictive features to predict a certain objective. Then, for each 

individual predictive feature as well as each possible combination of the predictive features, a 

distinct value of a Fuzzy measure is assigned to describe its influence to the objective. Due to the 

nonadditivity of the Fuzzy Measure, the influences of the predictive features to the objective are 

dependent such that the global contribution of them to the objective is not just the simple sum of 

their individual contributions. Set function μ  is nonadditive in general. If 1)( Xμ , then μ  is 

said to be regular. The monotonicity and non-negativity of fuzzy measure are too restrictive for real 

applications. Thus, the signed fuzzy measure, which is a generalization of fuzzy measure, has been 

defined [12, 13] and applied. 

A signed Fuzzy measure allows its value to be negative and frees monotonicity constraint. Thus, 

it is more flexible to describe the individual and joint contribution rates from the predictive features 

in a universal set towards some target. Let f  be a real-valued function on X . The fuzzy integral 

of f  with respect to μ  is obtained by 

dαFμdαXμFμfdμ αα 





0

0
)()]()([  (1) 

where  αxfxFα  )( , for any )(  ,α , is called the  fcut ofα   . 

To calculate the value of the Fuzzy integral of a given real-valued function f , usually the values 

of f , i.e., ,),f(x),),f(xf(x n21  should be sorted in a nondecreasing order so that

)'()()( 21 nxf'xf'xf   , where )( 21 'x,'x,'x n  is a certain permutation of )( 21 nx,x,x  . So 

the value of Fuzzy integral can be obtained by  
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The Fuzzy integral is based on linear operators to deal with nonlinear space. 

Transformation of Fuzzy integral. To be convenient, Wang [8] proposed a new scheme to 

calculate the value of a Fuzzy integral with real-valued integrand by the inner product of two 

( 12 n
)-dimension vectors as 
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with a convention that the maximum on the empty set is zero. Here, )
2

(
i

j
frc  denotes the fractional 

part of 
i

j

2
. In the above formula, if we express j  in the binary form 11- jjj nn  , then 
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A significant advantage of this new calculation scheme is that it can easily discover the 

coefficients matrix of a system of linear equations with the unknown variables μ  when the 

Choquet integral is applied in further applications, such as regression and classification [4, 8, 9]. In 

those practical applications, values of the signed Fuzzy measure are usually considered as unknown 

parameters which are to be estimated using the training data sets[5, 6]. The adoption of this new 

scheme make it convenient for using an algebraic method, such as the least square method, to 

estimate the value of μ , and furthermore, to reduce complexity of computation. 

After having this transformation, we can obtain the Fuzzy measure for a known dataset by using 

L1-norm Regularization. 

Solutions of the Fuzzy Measure. For determining the Fuzzy Measure, researchers have 

proposed many methods. In our past work, we used GA to learn the value of Fuzzy measure for 

each concrete dataset. In this paper, we propose a new method based on L1-norm regularization. 

In many regression problem, the most popular function used is the Least Squares estimate, 

alternately referred to as minimizer of the residual sum of squared errors (RSS)[7]: 

2
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iiji ωxωyRSS . Regularization addresses the numerical instability of the matrix 

inversion and subsequently produces lower variance models. It is easy to see that the following 

penalized RSS function with respect to ω  and 0ω :  
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referred to as L2 regularization. In order to simplify the notation used, we reduce it to the following 

problem (in matrix notation): 
2

2

2

2
ωλyXω  . While L2 regularization is an effective means of 

achieving numerical stability and increasing predictive performance, it cannot address another 

important problem with Least Squares estimates, parsimony of the model and interpretability of the 

coefficient values. It does not encourage sparsity in some cases [10]. So a trend has been become to 

replace L2-norm with an L1-norm recently. This L1 regularization has many of the beneficial 

properties of L2 regularization, but obtains sparse solutions that are more easily interpreted [7]. This 

property is what our algorithm wants. In Fuzzy integrals, determining the Fuzzy measure is the key 

procedure in the whole model. Fuzzy measure represents the importance of features and the 

interaction degree of features combined.  

We hope get a solution of Fuzzy measure with the fewest nonzero values to find the most 

important features and feature combinations. Using L1-norm regularization, we can minimize the 

following formula to reduce the size of nonzero in Fuzzy Measure: 
1

2

2
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. We can 

control the condensation compress degree for Fuzzy measure by adjusting the parameter  . Author 

of [11] proposed the Least Absolute Selection and Shrinkage Operator (LASSO) model based on 

Gauss-Seidel method. The obvious advantages of the Gauss-Seidel approach are its simplicity and 

its low iteration cost. We applied this kind of LASSO to solve the above L1-Norm problem. Finally, 

the optimal Fuzzy measure can be obtained. 
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Experiments and Analysis 

In first, we must investigate by collecting materials, spatial image recognition, field investigation, 

and questionnaire for the land potential evaluation. All factors which include land-use state, 

economics, social factors, ecological environment and policy have been considered. The results 

would be summarized and analyzed so that the whole situation of the ‘three old’ project is 

acknowledged precisely. All indexes considered are described as Table 1. 

Our model is applied to the shunde’s data for obtaining the key index system. Several classical 

evaluation models are adopted for testing the feature selection results. But the current number of 

indexes of three old data is rather large for Fuzzy integrals to deal with. It will take very long time 

to learn the Fuzzy Measure. So the feature selection is a necessary step. Based on previous research, 

reduct in Rough Sets is adopted to process the data before index selecting and classifying. The 

feature subsets selected are shown in Table 2. We can see the size of feature subsets from Rough 

Sets is greatly smaller than original one. It can greatly promote the efficiency of Fuzzy integrals 

because the time of learning the signed Fuzzy measure is reduced greatly. 

Table 1. All indexes of three old land 

Criteria layer Sub criteria layer Evaluation indexes 

Land-use(A) 

landscapes 
Building coordination 

Block crush degree 

Building situation 
Building age 

Building structure 

Development strength 
Volume ratio  

changing of building density 

Economical 

factors(B) 

Basic land price Basic land price 

Investment strength changing degree of investment amount  

Per capita net income Per capita net income 

Social factors(C) 

Population density Population density 

 

Social welfare 

 

Medical and sanity 

Education  

Public welfares( park , square) 

Basic facilities Traffic connectivity 

Green degree Green ratio 

Ecological 

factors(D) 
Ecological environment  

Noisy pollution 

Air pollution 

Water pollution 

Policy(E) 

Compensation and 

emplacement  

compensation 

emplacement 

Responding  Responding activity 

Management  Public participation 

The parameter in L1-Norm method is used for controlling the degree of compression for Fuzzy 

Measure. We set the value of  as 0, 1, 5, 10, 20, 50 and 100 respectively. The larger the value of

 is, the fewer the number of zero in solution is. The compressing the Fuzzy measure simplify the 

computation of Fuzzy integrals at the cost of performance. It needs to select an appropriate value 

for  to balance the complexity and the performance. Finally, the value of is determined as 100. 

The binary forms corresponding to fuzzy measure with values are {10000000} and {1111100} after 

compressing by L1-Norm, which means keeping indexes from x1 to x5. Based on fuzzy measures, 

fuzzy decision tree is applied to land data. All results with feature selection and fuzzy measures are 

listed in Table 2. We can see that the size of tree is compressed as the number of features is 

decreased and the performance is improved. 
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Table 2. The results with feature selection and compressing by fuzzy measure 

Types 

performance 
All features 

with feature 

selection 

with fuzzy 

measure 

Prediction accuracy 89.12% 93.06% 94.34% 

Selected features all {4,6,8,9,10,11,15} {4,6,8,9,10} 

Number of leaves 10 7 4 

Size of tree 19 13 7 

Conclusions 

Land data usually includes many indexes which may be not useful for decision. Feature selection 

must be executed before prediction. Due to the great number of features, the computational 

complexity of determining Fuzzy measures is very large. Finding the values of each fuzzy measure 

is a hard work. In this paper, we use the L1-norm method to solve the problem of complexity. The 

Fuzzy measure with the fewest nonzero values can be obtained by compressing using L1-norm 

regularization, which can reduce the complexity greatly with promoting performance. Experimental 

results show that the indexes selection can help to reduce the complexity and improve performance. 

Selecting one optimal value of parameter   can keep a balance between complexity and 

performance. The detailed values of fuzzy measure can be confirmed to describe the interaction of 

features with respect to contribution for decision. 
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