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Abstract. Simulation is a powerful tool for the analysis of new system designs, retrofits to existing 

systems and proposed changes to operating rules. In this paper we limit our discussion to parallel and 

distributed simulation (PDS). In order to simulate large-scale complex systems with better 

consistency, further more as fast as possible, the universally adoptive approach of PDS is that make 

the execution of simulation programs on multiprocessor and distributed computing platforms. Time 

management algorithm is one of the key techniques in the parallel and distributed system simulation, 

which broadly fall into conservative and optimistic synchronization. A survey of both the two 

algorithms is presented focusing on fundamental principles and mechanisms. The remainder of this 

paper is focused on one of the novel rollback algorithm; we call it as unconventional rollback 

algorithm. And then, we provide and describe the novel rollback algorithm in optimistic time 

management in detail, including scheduler’s priority queue, rollback manager, cancellation strategies, 

and roll forward operation. Among this paper, central issues concern the synchronization of 

computations on different processors. Finally, we discuss how to get the relatively minimal rollback, 

and how to realize the dynamic allocation and reclamation. 

Introduction 

In this paper, we first give an overview of Parallel and Distributed Simulation (PDS), in which 

involves the advantage and the architecture of PDS. Afterwards two main approaches in 

synchronizing parallel simulation execution, briefly either conservative or optimistic are reviewed. 

Then, in respect that rollback algorithm adopted in the optimistic approach may potentially uncover a 

higher degree of parallelism in the simulated system; we discuss the traditional rollback mechanism 

and set forth a novel rollback algorithm, termed as unconventional rollback. Later we provide an 

emphatic study to describe the novel rollback algorithm in optimistic time management in detail, 

including scheduler’s priority queue, rollback manager, cancellation strategies, and roll forward 

operation. Sequentially we discuss how to get the relatively minimal rollback, and how to realize the 

dynamic allocation and reclamation in the rollback.  

Traditional Rollback Mechanism 

The Time Warp mechanism (Jefferson 1985) is the most well known optimistic method. When an LP 

receives an event with timestamp smaller than one or more events it has already processed, it rolls 

back and reprocesses those events in timestamp order. Rolling back an event involves restoring the 

state of the LP to that which existed prior to processing the event, and "cancel-sending" messages sent 

by the rolled back events. An elegant mechanism called anti-messages is provided to "cancel-send" 

messages.  

An anti-message is a duplicate copy of a previously sent message. Whenever an anti-message and 

its matching (positive) message are both stored in the same queue, the two are deleted. To cancel 

sending the message, a process need only send the corresponding anti-message. If the matching 
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positive message has already been processed, the receiver process is rolled back, possibly producing 

additional anti-messages. Using this recursive procedure all effects of the erroneous message will 

eventually be erased. 

    There are still two problems remain to be solved. For one thing, certain computations, e.g., I/O 

operations, cannot be rolled back. For another thing, the computation will continually consume more 

and more memory resources because a history must be retained, even if no rollbacks occur; some 

mechanism is required to reclaim the memory used for this history information. Both problems are 

solved by global virtual time (GVT). [6] GVT is a lower bound on the timestamp of any future 

rollback. GVT is computed by observing that rollbacks are caused by messages arriving "in the past." 

Therefore, the smallest timestamp among unprocessed and partially processed messages gives a value 

for GVT. Once GVT has been computed, I/O operations occurring at simulated times older than GVT 

can be committed, and storage older than GVT (except one state vector for each LP) can be reclaimed. 

Unconventional Rollback Algorithm 

In order to avoid an explosion of cascading anti-messages and get relatively high-powered parallel 

and distributed simulation, we provide a novel rollback algorithm, termed as unconventional rollback 

algorithm. Simulation object manage both their set of unprocessed pending events and their processed 

but uncommitted events. Each event has a Rollback Manager that stores Specialized State Altering 

Items (SSAI) items that are created as capable-rollback operations are performed while processing the 

event. SSAI items undo the operation that generated them when rollbacks occur. 

Schedule priority queue. Each node in our simulation drive provides a scheduler that coordinates 

event processing for its local simulation objects. The scheduler maintains each simulation object in a 

priority queue using each simulation object’s next unprocessed event time as its priority. Priority 

queues have two primary operations: insert and remove. The insert operation inserts an item with a 

priority value (e.g., a time tag). The remove operation removes the item with the highest priority (e.g., 

the smallest time tag). The same priority queue data structure can be used to manage simulation object 

in the scheduler or events in a simulation object. The scheduler first removes the simulation object 

with the earliest unprocessed event time. It then processes the simulation object’s next event. 

Afterwards, the scheduler inserts the now processed event into the simulation object’s optimistically 

processed event list. Finally, the scheduler reinserts the simulation object back into its priority queue 

using the simulation object’s next unprocessed event time as its priority. If the simulation object has 

no more pending events, then it does not need to be inserted in the scheduler’s priority queue. It is 

possible for another simulation object to later schedule an event for a simulation object that has no 

pending events. When this happens, the scheduler will insert the simulation object back into its 

priority queue to coordinate its event processing. 

Rollback Manager. To accomplish this, each simulation object maintains its set of pending events in 

its own priority queue. In addition, each simulation object also manages its optimistically processed 

but uncommitted events in a doubly linked list. The optimistically processed list of events is cleaned 

up when Global Virtual Time (GVT) is determined. Events with time tags less than GVT are   

committed and then removed from the list of optimistically processed events. 

Event objects contain a Rollback Manager, which stores SSAI that are created when 

capable-rollback operations are performed. The SSAI base class defines two virtual functions: 

Rollback() and Cleanup(). These functions are used to implement support for rollbacks. Each 

state-saving operation generates an instance of a derived SSAI class to uniquely implement those two 

virtual functions for the operation. The specialized SSAI classes are inserted into the event’s SSAI 

Monitor as they are created. The event’s SSAI Monitor then provides a stack of specialized SSAI 

items. These SSAI items are responsible for undoing the operations that caused their creation in case 

rollbacks occur. The Rollback() virtual function is invoked on each SSAI in reverse order to restore 

the simulation object back to its original state before the event was processed. 
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Cancellation Strategiesk Manager. When a rollback occurs, some output messages may need to 

be cancelled. There are two categories of cancellation strategy—aggressive and lazy.  

Aggressive Cancellation: When the aggressive cancellation strategy is used, antimessages are sent 

immediately when a rollback occurs. Such messages often lead to secondary rollbacks in other LPs. 

The assumption is that the cancelled messages may be causing erroneous computation in other LPs. 

Lazy Cancellation: When the lazy cancellation strategy is used, antimessages are not sent when a 

rollback occurs. Instead, antimessages are placed into a queue of pending antimessages. When the LP 

resumes execution, it will generate output messages. In the event that an output message is the same 

as a message that would have been cancelled during the rollback, then the pending antimessage and 

the new output message will annihilate. 

The assumption is that after a rollback, an LP is likely to produce the same output messages. In this 

case, the lazy cancellation strategy will reduce the unnecessary secondary rollbacks that would occur 

with aggressive cancellation. 

 

Fig.1 the Relationship between the Node, Simulation object, Event, SSAI Monitor and SSAI base 

class 

Roll Forward Operation. Sometimes, events that have been rolled back do not need to 

reprocessed, but instead can be rolled forward. This occurs when a straggler does not modify any of 

the state variables that the rolled-back event depends on. This performance enhancing technique is 

called Lazy Cancellation because the rolled-back event waits and tries to roll forward before 

cancelling the events it may have generated. To support roll forward operations, each SSAI item must 

roll forward whenever the Rollback() virtual function is called again. Two rollbacks on an event are 

equivalent to a rollback followed by a roll forward. In the most general sense, an odd number of 

rollbacks restore the event back to its state before the event was processed. While an even number of 

rollbacks restores the simulation object back to its state after the event was originally processed. 

 

Fig.2  straggler messages arrive from other node cause rollback 
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When a node of parallel simulation receives a straggler message, it does not rollback all of the 

locally processed events that have a greater time value. Instead, it only rolls back the necessary events 

that were processed by the target simulation object. This is shown in Fig.2. 

More parallelism is achieved through limiting rollbacks in this manner. This approach results in 

fewer rollbacks and better overall parallel performance. However, it does mean that events must be 

associated with one and only one, simulation object. Accessing and/or modifying the state variables 

of another simulation object in an event are forbidden. 

Dynamic Allocation and Reclamation. Often event processing requires the allocation and/or 

reclamation of memory. In the case of allocation this must be done in a reclamation manner to avoid 

memory leaks, and also access to freed memory at reclamation. We provide the 

DYNMEMORY__CLASS (N) macro to support reclamation dynamic memory operations. The code 

how to use this macro is provided below:  

/*an example how to use the macro DYNMEMORY _CLASS */ 

#define AppClassGate 

#include “RollBack.H”//Fundamental data types 

AppClass { 

public: 

AppClass() {} 

AppClass(int a) {B = a;} 

int GetB() {return B;} 

void SetB(int a) {B = a;} 

private: 

RollBack_int B; 

}; 

/*the macro defines rollback memory allocation and reclamation functions for AppClass*/ 

DYNMEMORY_ CLASS (AppClass) 

#endif 

 

The T argument is the name of the class or type being defined for rollback dynamic memory 

operations. Please take notice of the importance to clearly know that the DYNMEMORY_ CLASS 

macro does not make the internals of the class rollback. It only provides rollback memory allocation 

and reclamation operations. This macro is normally after the placed class definition in its header file 

and defines several important functions and unconventional pointers. 

Conclusion 

Parallel simulation is concerned with the execution of simulation programs on multiprocessor 

computing platforms. While distributed simulation is concerned with the execution of simulations on 

geographically distributed computers interconnected via a local area and/or wide area network. 

Parallel and distributed simulation technologies address issues concerning the execution of 

simulation programs on multiprocessor and distributed computing platforms.  

Time management algorithm is one of the key techniques in the parallel and distributed system 

simulation. Much of the work concerning the execution of analytic simulations on multiprocessor 

computers is concerned with synchronization. The synchronization algorithm ensures that the cause 

and effect relationship in the system being simulated are correctly reproduced in the simulation 

program. Synchronization in time management is a well-studied area of research in the parallel and 

distributed system simulation field. 

     In our paper, we first give an overview of Parallel and Distributed Simulation (PDS). Then a 

survey of both the two algorithms is relatively presented focusing on fundamental principles and 

mechanisms. Afterwards, in respect that rollback algorithm adopted in the optimistic approach may 

potentially uncover a higher degree of parallelism in the simulated system; we simply discuss the 
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traditional rollback mechanism and set forth a novel rollback algorithm, termed as unconventional 

rollback, in the remainder of this paper. Later we provide and describe this unconventional rollback 

algorithm in detail. Such as scheduler’s priority queue, rollback manager, cancellation strategies, and 

roll forward operation, even minimal rollback and the dynamic allocation and reclamation all are 

discussed.  
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