

A Unconventional Rollback Synchronization Algorithm in Parallel and

Distributed Simulation System

Xue-hui Wanga, Lei Zhangb

State Key Laboratory of High Performance Computing, National University of Defense Technology,
Changsha 410073, China

a
findyanzi@126.com,

b
zlmailbox2000@163.com

Keywords: parallel and distributed simulation(PDS), time management, synchronization,
unconventional rollback algorithm.

Abstract. Simulation is a powerful tool for the analysis of new system designs, retrofits to existing

systems and proposed changes to operating rules. In this paper we limit our discussion to parallel and

distributed simulation (PDS). In order to simulate large-scale complex systems with better

consistency, further more as fast as possible, the universally adoptive approach of PDS is that make

the execution of simulation programs on multiprocessor and distributed computing platforms. Time

management algorithm is one of the key techniques in the parallel and distributed system simulation,

which broadly fall into conservative and optimistic synchronization. A survey of both the two

algorithms is presented focusing on fundamental principles and mechanisms. The remainder of this

paper is focused on one of the novel rollback algorithm; we call it as unconventional rollback

algorithm. And then, we provide and describe the novel rollback algorithm in optimistic time

management in detail, including scheduler’s priority queue, rollback manager, cancellation strategies,

and roll forward operation. Among this paper, central issues concern the synchronization of

computations on different processors. Finally, we discuss how to get the relatively minimal rollback,

and how to realize the dynamic allocation and reclamation.

Introduction

In this paper, we first give an overview of Parallel and Distributed Simulation (PDS), in which

involves the advantage and the architecture of PDS. Afterwards two main approaches in

synchronizing parallel simulation execution, briefly either conservative or optimistic are reviewed.

Then, in respect that rollback algorithm adopted in the optimistic approach may potentially uncover a

higher degree of parallelism in the simulated system; we discuss the traditional rollback mechanism

and set forth a novel rollback algorithm, termed as unconventional rollback. Later we provide an

emphatic study to describe the novel rollback algorithm in optimistic time management in detail,

including scheduler’s priority queue, rollback manager, cancellation strategies, and roll forward

operation. Sequentially we discuss how to get the relatively minimal rollback, and how to realize the

dynamic allocation and reclamation in the rollback.

Traditional Rollback Mechanism

The Time Warp mechanism (Jefferson 1985) is the most well known optimistic method. When an LP

receives an event with timestamp smaller than one or more events it has already processed, it rolls

back and reprocesses those events in timestamp order. Rolling back an event involves restoring the

state of the LP to that which existed prior to processing the event, and "cancel-sending" messages sent

by the rolled back events. An elegant mechanism called anti-messages is provided to "cancel-send"

messages.

An anti-message is a duplicate copy of a previously sent message. Whenever an anti-message and

its matching (positive) message are both stored in the same queue, the two are deleted. To cancel

sending the message, a process need only send the corresponding anti-message. If the matching

2015 The 5
th

International Workshop on Computer Science and Engineering

582

admin
打字机文本
doi: 10.18178/wcse.2015.04.096

positive message has already been processed, the receiver process is rolled back, possibly producing

additional anti-messages. Using this recursive procedure all effects of the erroneous message will

eventually be erased.

 There are still two problems remain to be solved. For one thing, certain computations, e.g., I/O

operations, cannot be rolled back. For another thing, the computation will continually consume more

and more memory resources because a history must be retained, even if no rollbacks occur; some

mechanism is required to reclaim the memory used for this history information. Both problems are

solved by global virtual time (GVT). [6] GVT is a lower bound on the timestamp of any future

rollback. GVT is computed by observing that rollbacks are caused by messages arriving "in the past."

Therefore, the smallest timestamp among unprocessed and partially processed messages gives a value

for GVT. Once GVT has been computed, I/O operations occurring at simulated times older than GVT

can be committed, and storage older than GVT (except one state vector for each LP) can be reclaimed.

Unconventional Rollback Algorithm

In order to avoid an explosion of cascading anti-messages and get relatively high-powered parallel

and distributed simulation, we provide a novel rollback algorithm, termed as unconventional rollback

algorithm. Simulation object manage both their set of unprocessed pending events and their processed

but uncommitted events. Each event has a Rollback Manager that stores Specialized State Altering

Items (SSAI) items that are created as capable-rollback operations are performed while processing the

event. SSAI items undo the operation that generated them when rollbacks occur.

Schedule priority queue. Each node in our simulation drive provides a scheduler that coordinates

event processing for its local simulation objects. The scheduler maintains each simulation object in a

priority queue using each simulation object’s next unprocessed event time as its priority. Priority

queues have two primary operations: insert and remove. The insert operation inserts an item with a

priority value (e.g., a time tag). The remove operation removes the item with the highest priority (e.g.,

the smallest time tag). The same priority queue data structure can be used to manage simulation object

in the scheduler or events in a simulation object. The scheduler first removes the simulation object

with the earliest unprocessed event time. It then processes the simulation object’s next event.

Afterwards, the scheduler inserts the now processed event into the simulation object’s optimistically

processed event list. Finally, the scheduler reinserts the simulation object back into its priority queue

using the simulation object’s next unprocessed event time as its priority. If the simulation object has

no more pending events, then it does not need to be inserted in the scheduler’s priority queue. It is

possible for another simulation object to later schedule an event for a simulation object that has no

pending events. When this happens, the scheduler will insert the simulation object back into its

priority queue to coordinate its event processing.

Rollback Manager. To accomplish this, each simulation object maintains its set of pending events in

its own priority queue. In addition, each simulation object also manages its optimistically processed

but uncommitted events in a doubly linked list. The optimistically processed list of events is cleaned

up when Global Virtual Time (GVT) is determined. Events with time tags less than GVT are

committed and then removed from the list of optimistically processed events.

Event objects contain a Rollback Manager, which stores SSAI that are created when

capable-rollback operations are performed. The SSAI base class defines two virtual functions:

Rollback() and Cleanup(). These functions are used to implement support for rollbacks. Each

state-saving operation generates an instance of a derived SSAI class to uniquely implement those two

virtual functions for the operation. The specialized SSAI classes are inserted into the event’s SSAI

Monitor as they are created. The event’s SSAI Monitor then provides a stack of specialized SSAI

items. These SSAI items are responsible for undoing the operations that caused their creation in case

rollbacks occur. The Rollback() virtual function is invoked on each SSAI in reverse order to restore

the simulation object back to its original state before the event was processed.

583

Cancellation Strategiesk Manager. When a rollback occurs, some output messages may need to

be cancelled. There are two categories of cancellation strategy—aggressive and lazy.

Aggressive Cancellation: When the aggressive cancellation strategy is used, antimessages are sent

immediately when a rollback occurs. Such messages often lead to secondary rollbacks in other LPs.

The assumption is that the cancelled messages may be causing erroneous computation in other LPs.

Lazy Cancellation: When the lazy cancellation strategy is used, antimessages are not sent when a

rollback occurs. Instead, antimessages are placed into a queue of pending antimessages. When the LP

resumes execution, it will generate output messages. In the event that an output message is the same

as a message that would have been cancelled during the rollback, then the pending antimessage and

the new output message will annihilate.

The assumption is that after a rollback, an LP is likely to produce the same output messages. In this

case, the lazy cancellation strategy will reduce the unnecessary secondary rollbacks that would occur

with aggressive cancellation.

Fig.1 the Relationship between the Node, Simulation object, Event, SSAI Monitor and SSAI base

class

Roll Forward Operation. Sometimes, events that have been rolled back do not need to

reprocessed, but instead can be rolled forward. This occurs when a straggler does not modify any of

the state variables that the rolled-back event depends on. This performance enhancing technique is

called Lazy Cancellation because the rolled-back event waits and tries to roll forward before

cancelling the events it may have generated. To support roll forward operations, each SSAI item must

roll forward whenever the Rollback() virtual function is called again. Two rollbacks on an event are

equivalent to a rollback followed by a roll forward. In the most general sense, an odd number of

rollbacks restore the event back to its state before the event was processed. While an even number of

rollbacks restores the simulation object back to its state after the event was originally processed.

Fig.2 straggler messages arrive from other node cause rollback

584

When a node of parallel simulation receives a straggler message, it does not rollback all of the

locally processed events that have a greater time value. Instead, it only rolls back the necessary events

that were processed by the target simulation object. This is shown in Fig.2.

More parallelism is achieved through limiting rollbacks in this manner. This approach results in

fewer rollbacks and better overall parallel performance. However, it does mean that events must be

associated with one and only one, simulation object. Accessing and/or modifying the state variables

of another simulation object in an event are forbidden.

Dynamic Allocation and Reclamation. Often event processing requires the allocation and/or

reclamation of memory. In the case of allocation this must be done in a reclamation manner to avoid

memory leaks, and also access to freed memory at reclamation. We provide the

DYNMEMORY__CLASS (N) macro to support reclamation dynamic memory operations. The code

how to use this macro is provided below:

/*an example how to use the macro DYNMEMORY _CLASS */

#define AppClassGate

#include “RollBack.H”//Fundamental data types

AppClass {

public:

AppClass() {}

AppClass(int a) {B = a;}

int GetB() {return B;}

void SetB(int a) {B = a;}

private:

RollBack_int B;

};

/*the macro defines rollback memory allocation and reclamation functions for AppClass*/

DYNMEMORY_ CLASS (AppClass)

#endif

The T argument is the name of the class or type being defined for rollback dynamic memory

operations. Please take notice of the importance to clearly know that the DYNMEMORY_ CLASS

macro does not make the internals of the class rollback. It only provides rollback memory allocation

and reclamation operations. This macro is normally after the placed class definition in its header file

and defines several important functions and unconventional pointers.

Conclusion

Parallel simulation is concerned with the execution of simulation programs on multiprocessor

computing platforms. While distributed simulation is concerned with the execution of simulations on

geographically distributed computers interconnected via a local area and/or wide area network.

Parallel and distributed simulation technologies address issues concerning the execution of

simulation programs on multiprocessor and distributed computing platforms.

Time management algorithm is one of the key techniques in the parallel and distributed system

simulation. Much of the work concerning the execution of analytic simulations on multiprocessor

computers is concerned with synchronization. The synchronization algorithm ensures that the cause

and effect relationship in the system being simulated are correctly reproduced in the simulation

program. Synchronization in time management is a well-studied area of research in the parallel and

distributed system simulation field.

 In our paper, we first give an overview of Parallel and Distributed Simulation (PDS). Then a

survey of both the two algorithms is relatively presented focusing on fundamental principles and

mechanisms. Afterwards, in respect that rollback algorithm adopted in the optimistic approach may

potentially uncover a higher degree of parallelism in the simulated system; we simply discuss the

585

traditional rollback mechanism and set forth a novel rollback algorithm, termed as unconventional

rollback, in the remainder of this paper. Later we provide and describe this unconventional rollback

algorithm in detail. Such as scheduler’s priority queue, rollback manager, cancellation strategies, and

roll forward operation, even minimal rollback and the dynamic allocation and reclamation all are

discussed.

References

[1] Jefferson D. Virtual Time. [J]. ACM Transactions on Programming Languages and Systems,

1985. Vol. 7(3), p. 404-425.

[2] Li, Cheng-Hong; Park, Alfred J.Analytical performance modeling for null message-based

parallel discrete event simulation. Proceedings of MASCOTS 2011. p349-358.

[3] Liu, Jason. Real-time scheduling of logical processes for parallel discrete-event simulation.

Proceedings of the 2013 Winter Simulation Conference. 2013, p2959-2971

[4] xuehui Wang, Research on the Time Management Technology in Parallel and Distributed

Simulation Systems [D], National University of Defense Technology, 2006.

[5] De Munck, S.; Vanmechelen, K.; Broeckhove, J. Revisiting conservative time synchronization

protocols in parallel and distributed simulation. CONCURRENCY AND

COMPUTATION-PRACTICE & EXPERIENCE Vol.26(2) P.468-490, feb.2014.

[6] R.M. Fujimoto. Parallel discrete event simulation：Will the field survive？ORSA Journal of

Computing, 5(3):213-230, 2005, 17(11): 2727-2730.

586

