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Abstract. In the past decades, many end-to-end TCP enhancements have been presented for the 

wireless networks with high bit-error rates (BER). As a typical example, TCP Veno mainly 

enhanced the performance suffering in the wireless networks.  However, the fixed queue length 

threshold and traditional fast recovery algorithm make TCP Veno unable to adapt to the network 

states changes. In this paper, we propose an enhancement based on TCP Veno, called TCP VenoDR, 

which has two improvements: differentiating the random loss from congestion loss based on an 

adaptive queue length threshold of bottleneck link, and a dynamic recovery algorithm (DR) in the 

recovery period by adopting a dynamically adjusted variable to control the congestion window 

(cwnd). The simulation results by NS-2 show that VenoDR obtains a significant performance in 

throughput, bandwidth utilization and fairness over the traditional TCPs, such as Veno, Westwood, 

and Reno in wired/wireless networks. 

Introduction 

With the rapid development of emerging wireless communication technology, the reliable transport 

control protocol originally designed for wired networks, such as TCP Reno [1], is challenged by the 

problem of high BER when it is deployed in wired/wireless networks. Since the random BER is 

negligible in wired networks, traditional TCP regards congestion as the main reason of packet loss. 

But in wireless networks, the packet loss is often induced by high BER rather than congestion. 

Therefore, the traditional TCP is unable to differentiate the random packet loss from congestion 

loss, which results in slowing down the sending rate and performance degradations in 

wired/wireless heterogeneous networks. 

As an end-to-end scheme [2, 3, 4], TCP Veno [5] can provide a significant improvement in the 

wireless networks and show friendliness towards TCP Reno in simulation and Internet 

measurements. It estimates the number of packets (N) backlogged in the router buffer and compares 

N with a fixed threshold β (generally 3) to differentiate the random packet losses from network 

congestion and adjusts the cwnd accordingly. However, the following shortages still exist in TCP 

Veno when it is applied in wired/wireless networks with high BER. (i) The coarse-grained 

estimation of N and a fixed threshold make TCP Veno unable to adapt to the network states changes. 

(ii) TCP Veno inherits the fast recovery (FR) algorithm of traditional TCP, which will reduce the 

cwnd by several times if multiple packets are lost within a window and drive the TCP into timeout. 

To solve the performance degradation in FR algorithm mentioned above, many researchers have 

proposed several algorithms, such as TCP NewReno [6], TCP SACK [7], and TCP FACK [8], etc. 

They all provide good solutions of this problem, but modifications of both the TCP sender and 

receiver are needed in SACK and FACK, which make them complex to realize and hard to 

widespread. Compared to these algorithms, NewReno only has a few changes in TCP senders. And 

it is more compatible with traditional TCP algorithms. 

In this paper, we improve the loss differentiation mechanism in Veno with an adaptive queue 

length threshold and add an improved dynamic recover algorithm (DR) to Veno based on the FR in 

TCP NewReno,aiming to improve the TCP performance in wired/wireless networks with high BER. 
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The organization of the rest paper is as follows. Section 2 introduces the related works of loss 

differentiation in TCP Veno and FR algorithm in TCP NewReno. In section 3, we propose and 

discuss the TCP VenoDR. Section 4 descripts the simulation and performance evaluation of TCP 

VenoDR and other TCP variants. Finally, section 5 concludes with the simulation and observation. 

Related works 

Overview of TCP Veno. TCP Veno utilizes the idea of congestion control scheme in TCP Vegas 

[9] and intelligently integrates it into TCP Reno. It refines Vegas’ additive increase and 

multiplicative decrease (AIMD) algorithm, adds the packet loss differentiation mechanism to Reno 

after receiving three duplicate ACKs (dup-ACKs). In the slow-start phase, Veno uses the same 

exponential increase algorithm as Reno. In the congestion avoidance phase, Veno calculates 

backlogged packets number N in the router buffer shown in Eq. 1 and adjusts cwnd based on the 

comparison of N and a fixed threshold β (generally 3) as the following pseudo codes. 

N = (cwnd/BaseRTT – cwnd/RTT) BaseRTT.                                                                              (1) 

// The congestion avoidance phase. 

if (N < β)   cwnd=cwnd+1;              //available bandwidth not fully utilized 

else            cwnd=cwnd+1/cwnd;    // available bandwidth fully utilized 

where cwnd is the current TCP window size, BaseRTT is the minimum of measured round-trip 

times, and RTT is the smoothed round-trip time measured. When three duplicate ACKs occur, Veno 

differentiates packet losses as follows. 

// The loss differentiation mechanism. 

if (N < β)     ssthresh=4cwnd/5;         //random loss due to random BER 

else              ssthresh=cwnd/2;          //congestion loss 

Fast recovery algorithm of TCP NewReno.The realization process of FR algorithm in TCP 

NewReno is as follows [6]: 

Step1: NewReno enters the FR phase, when receiving three dup-ACKs. The slow-start threshold 

(ssthresh) is set to a fixed value equal to max(cwnd/2, 2). The recover_ saves the highest sequence 

number of transmitted packets. 

Step2: Retransmit the lost packets and add three maximum segment size (MSS) to the cwnd. 

Step3: When receiving a dup-ACK each time, the TCP sender increases the cwnd by one MSS 

and sends a new packet. 

Step4: When the sender receives a new ACK acknowledged, all the packets are recorded in 

recover_. Both the first lost packet and the packets transmitted after three dup-ACKs are 

acknowledged. NewReno will decrease the cwnd to min(ssthresh, cwnd+1) and exit the FR phase. 

Where the ssthresh is set to the value recorded in Step1. Otherwise, if the ACK only acknowledges 

part of the transmitted packets, namely a partial-ACK, the cwnd will be decreased to a value equal 

to the difference of the cwnd and the number of partial acknowledged packets. Then the TCP sender 

resets the timeout timer and goes back to Step3.  

Though NewReno is to avoid the performance degradation caused by multiple packets losses 

within a window, it still has deficiencies: (i) NewReno can not effectively get the enough 

information of the network bandwidth after receiving a partial-ACK, and resulting in low data 

transmission efficiency. (ii) The value of cwnd for exiting FR phase in Step4 has been determined 

before NewReno goes into FR phase, namely the ssthresh in Step1. The cwnd is not suitable for the 

network states when there are packet losses again during FR phase, which will  result in a frequent 

change between the FR and non-FR phase. 

TCP VenoDR 
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TCP VenoDR has two improvements.The one is an improved loss differentiation mechanism with 

an adaptive queue length threshold based on TCP Veno, and the other is the DR mechanism on the 

basis of TCP NewReno. 

Estimating the queue length. We note that a packet’s round-trip time (RTT) consists of three 

parts: queuing delay, transmission delay and propagation delay. The sum of transmission delay and 

propagation delay is generally a constant, it equals to the BaseRTT. And the queuing delay of 

bottleneck link is equal to L/BW, where L means the queue length in bottleneck link, BW means the 

bottleneck bandwidth. Therefore, the RTT can be formulated as Eq. 2, and then we can deduce the 

formula of L as Eq. 3. 

RTT = L/BW + BaseRTT.                                                                                                            (2) 

L = (RTT - BaseRTT) BW.                                                                                                           (3) 

Veno gets the coarse-grained estimation of bottleneck router backlogged packets number N, and 

VenoDR estimates the queue length L in bottleneck router based on RTT, BaseRTT and BW. 

Loss differentiation based on adaptive threshold. In order to estimate the congestion status of 

bottleneck link, we set an adaptive queue length threshold T: 

T =α Lmax.                                                                                                                                    (4) 

Lmax = (RTTmax - BaseRTT) BW.                                                                                             (5) 

where Lmax is the largest value of L calculated by TCP sender, and α is a constant between 0 and 1. 

Here α is an experience value which is set to 0.55 to maximize the throughput and fairness of 

VenoDR. 

When three dup-ACKs are received, if L<T, VenoDR regards the packet loss as a random loss 

and reduce ssthresh by a smaller amount (1/5). Otherwise, VenoDR assumes the packet loss caused 

by congestion and reduces the ssthresh by half. From Eq. 3 and Eq. 4, we note that L and T both 

have the factor BW, and divide both sides of the inequality L<T by BW and the inequality will still 

be true. Therefore, the BW is not necessary and it is set to 1. 

Dynamic recovery mechanism. In order to solve the problem discussed in 2.2, we propose a DR 

mechanism based on the FR algorithm in NewReno and the flowchart of DR mechanism is shown 

in Fig.1.  
After 3 dup-ACKs After 3 dup-ACKs 

Dup-ACK?Dup-ACK?

Go to DR phase

Settings:
1. recover_=maxseq_;
2. loss differetiation: 

if(L<T) ssthresh=cwnd *4/5;  

     else ssthresh=cwnd*1/2;  
3. retransmit packt loss;   recover_DR=recover_; 
4. cwnd_DR=0;   dup_max=outsanding;
    

Settings:
1. recover_=maxseq_;
2. loss differetiation: 

if(L<T) ssthresh=cwnd *4/5;  

     else ssthresh=cwnd*1/2;  
3. retransmit packt loss;   recover_DR=recover_; 
4. cwnd_DR=0;   dup_max=outsanding;
    

Y

cwnd deflation mechanism(First RTT):
1. output a new packet every other dup-Ack;
2. record the dup-ACK: ++dupwnd;
3. if(dupwnd>dup_max) retransmit again;
4. if (a partial-ACK arrives) cwnd_DR=dupwnd/2;

cwnd deflation mechanism(First RTT):
1. output a new packet every other dup-Ack;
2. record the dup-ACK: ++dupwnd;
3. if(dupwnd>dup_max) retransmit again;
4. if (a partial-ACK arrives) cwnd_DR=dupwnd/2;

bandwidth detecting mechanism:
1. retransmit lost packets corresponded by partial-ACK;
2. output a new packet every dup-ACK;
3. cwnd_DR += 1/cwnd_DR;     4. recover_=maxseq_;

bandwidth detecting mechanism:
1. retransmit lost packets corresponded by partial-ACK;
2. output a new packet every dup-ACK;
3. cwnd_DR += 1/cwnd_DR;     4. recover_=maxseq_;

new ACK
Seqno_>recover_
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Seqno_<=recover_DRSeqno_<=recover_DR

Exit DR phase:
1. dupwnd=0; 2. cwnd=cwnd_DR;
3. cwnd_DR=0; 

Exit DR phase:
1. dupwnd=0; 2. cwnd=cwnd_DR;
3. cwnd_DR=0; 

Packet lost in recovery phase:
1. ssthresh=cwnd_DR/2;
2. cwnd_DR=0;
3. recover_DR=recover_;
4. dup_max=outstanding;

Packet lost in recovery phase:
1. ssthresh=cwnd_DR/2;
2. cwnd_DR=0;
3. recover_DR=recover_;
4. dup_max=outstanding;

Y
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N
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Partial-ACK
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Fig.1 Flowchart of DR mechanism (including the fast retransmit) 
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The DR mechanism adopts a dynamic adjusted variable cwnd_DR, namely the packets 

transmitted in the current RTT, but not the cwnd determined before FR phase in NewReno. We note 

that the cwnd used in FR can’t reflect the number of packets transmitting currently in networks. It 

represents all the transmitted packets, which consists of both the packets transmitted in current RTT 

(cwnd_DR) and the packets transmitted in the previous RTT including the lost packets and 

unacknowledged packets. Only the first part of the cwnd should be adopted to adjust the value of 

congestion window when TCP exits the FR phase. Therefore, DR mechanism uses cwnd_DR to 

control the recovery and passes the value of cwnd_DR back to cwnd when it exits the DR phase. 

The initialization and dynamic update of cwnd_DR are shown in Fig.1. Specific meanings of the 

other parameters are given below. The variable recover_ denotes the highest sequence number 

before the most recent dup-ACK received. The recover_DR means the highest sequence number 

when the first packet loss of the previous RTT happened. The dup_max represents the number of 

transmitting and unacknowledged packets. The dupwnd records the number of dup-ACKs during 

cwnd deflation phase. And seqno_ means the sequence number indicated by the current ACK. 

The DR mechanism contains two parts compared to NewReno: cwnd deflation mechanism and 

bandwidth detecting mechanism. The first part is to recover the first packet loss, including the 

situation that the packet lost again during retransmission period (when dupwnd>dup_max), and to 

give the rights of congestion control back to cwnd through passing cwnd_DR to cwnd when it exits 

the DR, which will realize the deflation of cwnd. When the sender receives a partial-ACK, which 

means multiple packets are lost within a window, it enters the bandwidth detecting phase. The 

bandwidth detecting phase can not only recover the rest of packet losses corresponded by partial-

ACK but also detect the available network bandwidth by adopting an additive increase algorithm, 

namely increasing the cwnd_DR by one MSS every RTT. Then if a partial-ACK is received, we 

judge whether the recovery phase with packet loss or not by comparing the seqno_ and recover_DR. 

If seqno_<=recover_DR, there are packet losses in DR again, we need to update the cwnd_DR, 

recover_DR and dup_max. Then the recovery will go back to the cwnd deflation phase. Otherwise, 

it will go to the bandwidth detecting phase. The sender will exit the DR phase when all packet 

losses are recovered and pass the value of cwnd_DR back to cwnd as shown in Fig.1. 

Performance Evaluation 

We evaluate the performance of TCP VenoDR using NS-2 network simulator in throughput, 

bandwidth utilization, fairness and friendliness compared with the other three representative 

algorithms, namely TCP Reno, TCP Veno and TCP WestwoodNR [10]. We use the topology 

depicted in Fig. 2 to simulate the throughput performance, and the topology shown in Fig. 3 to 

evaluate the fairness and friendliness performance. 
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10 10

 
            Fig.2 Topology for throughput                        Fig.3 Topology for fairness and friendliness 

 

Throughput performance. The connection between the source node and base station is an error 

free link. The base station is linked to the wireless destination node with BER varying from 0.01% 

to 10%. The link bandwidth and one-way delay are shown in Fig.2. A single TCP connection runs a 

FTP application from 0s to 100s. The maximum segment size is 1400 bytes. We run the simulation 

for VenoDR, Veno, Reno and WestwoodNR respectively. The router buffers are equal to the pipe 

size. 
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       Fig.4 Mean throughput comparison                         Fig.5 Comparison with 2% BER 

 

Fig.4 shows the mean throughput comparison of 4 algorithms under different wireless BER from 

0.01% to 10%. When the loss rate is smaller than 0.5%, the throughput curves are almost the same. 

From 0.5%, TCP VenoDR is superior to other 3 algorithms along with the growth of BER, 

especially when the BER is higher than 1%. Fig. 5 shows the throughput comparison in real time 

with 2% BER. It is obvious that the throughput of VenoDR at 100s outperforms Veno by 44.1%, 

WestwoodNR by 47.0% and Reno by 113.8%. And the advantages of VenoDR still exist in various 

bottleneck bandwidths as shown in Fig. 6. 
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Fig.6 Comparison of various BW                          Fig.7 Fairness index comparison 

 

Fairness and friendliness performance. TCP fairness means that multiple senders running the 

same TCP algorithm share the network resources fairly when the network congestion occurs. As 

shown in Fig. 3, there are a total of 10 same TCP flows share a 20Mb/s bottleneck link. The BER at 

the wireless bottleneck link varies from 0.5% to 5%. We simulate the four TCP schemes respectively 

and calculate the fairness index proposed in [11] to evaluate the fairness of TCP schemes. The 

results are shown in Fig. 7. 

The fairness indexes of VenoDR with different BER are all higher than 0.996, which is also 

higher than the other three algorithms. That means VenoDR has a fairly satisfactory fairness 

performance. Moreover, we can see from Fig. 8, which shows the total throughput of 10 TCP 

VenoDR connections compared to other three TCP algorithms, the throughput of TCP VenoDR is 

much higher than others. In conclusion, TCP VenoDR not only has a better fairness but also provide 

the highest bandwidth utilization compared to others. 
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               Fig.8 Bandwidth utilization                    Fig.9 Friendliness of VenoDR towards Reno 

 

A friendly TCP scheme should be able to coexist with other TCP variants. We simulate the 

friendliness of VenoDR towards Reno using the topology with total 10 TCP connections of two 

schemes sharing a 20Mbps bottleneck in Fig.3. The simulation results are shown in Fig.9, where the 

horizontal axis represents the number of competing Reno connections, the remaining connections 

being VenoDR. The vertical axis represents the average throughput of Reno and VenoDR 

respectively. From Fig. 9 we can see that VenoDR achieves a little higher throughput than its fair 

share, and the throughput of Reno is below the fair share but within a tolerable range. Therefore, 

VenoDR is friendly towards Reno. 

Conclusions 

In this paper, we have described a novel congestion control mechanism called TCP VenoDR with 

adaptive queue length threshold and DR mechanism. It utilizes the RTT measurements to estimate 

the queue length of bottleneck link and differentiates packet loss based on an adaptive threshold. Its 

DR algorithm can probe the available bandwidth of the network, recover not only the first packet 

loss but also the packets lost later in the recovery period, and adopt a dynamically adjusted variable 

to control the congestion window when it exits the recovery phase. Simulation results by NS-2 

show that VenoDR provides a significant performance improvement in throughput, bandwidth 

utilization and fairness over other TCP variants. It is also friendly towards the traditional TCP Reno. 
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