

TCP VenoDR: TCP Enhancement with Adaptive Queue Length
Threshold and Dynamic Recovery Mechanism

Nan Ding1,a, Rui-Qing Wu1,b and Hong Jie1,c
1School of Electronic Engineering, University of Electronic Science and Technology of China,

Chengdu, 611731, China

adingnan11@163.com, brqwu@uestc.edu.cn, cjieqionghong@126.com

Keywords: wired/wireless networks, loss differentiation, adaptive queue length threshold, dynamic
recovery mechanism

Abstract. In the past decades, many end-to-end TCP enhancements have been presented for the

wireless networks with high bit-error rates (BER). As a typical example, TCP Veno mainly

enhanced the performance suffering in the wireless networks. However, the fixed queue length

threshold and traditional fast recovery algorithm make TCP Veno unable to adapt to the network

states changes. In this paper, we propose an enhancement based on TCP Veno, called TCP VenoDR,

which has two improvements: differentiating the random loss from congestion loss based on an

adaptive queue length threshold of bottleneck link, and a dynamic recovery algorithm (DR) in the

recovery period by adopting a dynamically adjusted variable to control the congestion window

(cwnd). The simulation results by NS-2 show that VenoDR obtains a significant performance in

throughput, bandwidth utilization and fairness over the traditional TCPs, such as Veno, Westwood,

and Reno in wired/wireless networks.

Introduction

With the rapid development of emerging wireless communication technology, the reliable transport

control protocol originally designed for wired networks, such as TCP Reno [1], is challenged by the

problem of high BER when it is deployed in wired/wireless networks. Since the random BER is

negligible in wired networks, traditional TCP regards congestion as the main reason of packet loss.

But in wireless networks, the packet loss is often induced by high BER rather than congestion.

Therefore, the traditional TCP is unable to differentiate the random packet loss from congestion

loss, which results in slowing down the sending rate and performance degradations in

wired/wireless heterogeneous networks.

As an end-to-end scheme [2, 3, 4], TCP Veno [5] can provide a significant improvement in the

wireless networks and show friendliness towards TCP Reno in simulation and Internet

measurements. It estimates the number of packets (N) backlogged in the router buffer and compares

N with a fixed threshold β (generally 3) to differentiate the random packet losses from network

congestion and adjusts the cwnd accordingly. However, the following shortages still exist in TCP

Veno when it is applied in wired/wireless networks with high BER. (i) The coarse-grained

estimation of N and a fixed threshold make TCP Veno unable to adapt to the network states changes.

(ii) TCP Veno inherits the fast recovery (FR) algorithm of traditional TCP, which will reduce the

cwnd by several times if multiple packets are lost within a window and drive the TCP into timeout.

To solve the performance degradation in FR algorithm mentioned above, many researchers have

proposed several algorithms, such as TCP NewReno [6], TCP SACK [7], and TCP FACK [8], etc.

They all provide good solutions of this problem, but modifications of both the TCP sender and

receiver are needed in SACK and FACK, which make them complex to realize and hard to

widespread. Compared to these algorithms, NewReno only has a few changes in TCP senders. And

it is more compatible with traditional TCP algorithms.

In this paper, we improve the loss differentiation mechanism in Veno with an adaptive queue

length threshold and add an improved dynamic recover algorithm (DR) to Veno based on the FR in

TCP NewReno,aiming to improve the TCP performance in wired/wireless networks with high BER.

2015 The 5
th

International Workshop on Computer Science and Engineering

575

mailto:adingnan11@163.com,
mailto:brqwu@uestc.edu.cn,
admin
打字机文本
doi: 10.18178/wcse.2015.04.095

The organization of the rest paper is as follows. Section 2 introduces the related works of loss

differentiation in TCP Veno and FR algorithm in TCP NewReno. In section 3, we propose and

discuss the TCP VenoDR. Section 4 descripts the simulation and performance evaluation of TCP

VenoDR and other TCP variants. Finally, section 5 concludes with the simulation and observation.

Related works

Overview of TCP Veno. TCP Veno utilizes the idea of congestion control scheme in TCP Vegas

[9] and intelligently integrates it into TCP Reno. It refines Vegas’ additive increase and

multiplicative decrease (AIMD) algorithm, adds the packet loss differentiation mechanism to Reno

after receiving three duplicate ACKs (dup-ACKs). In the slow-start phase, Veno uses the same

exponential increase algorithm as Reno. In the congestion avoidance phase, Veno calculates

backlogged packets number N in the router buffer shown in Eq. 1 and adjusts cwnd based on the

comparison of N and a fixed threshold β (generally 3) as the following pseudo codes.

N = (cwnd/BaseRTT – cwnd/RTT) BaseRTT. (1)

// The congestion avoidance phase.

if (N < β) cwnd=cwnd+1; //available bandwidth not fully utilized

else cwnd=cwnd+1/cwnd; // available bandwidth fully utilized

where cwnd is the current TCP window size, BaseRTT is the minimum of measured round-trip

times, and RTT is the smoothed round-trip time measured. When three duplicate ACKs occur, Veno

differentiates packet losses as follows.

// The loss differentiation mechanism.

if (N < β) ssthresh=4cwnd/5; //random loss due to random BER

else ssthresh=cwnd/2; //congestion loss

Fast recovery algorithm of TCP NewReno.The realization process of FR algorithm in TCP

NewReno is as follows [6]:

Step1: NewReno enters the FR phase, when receiving three dup-ACKs. The slow-start threshold

(ssthresh) is set to a fixed value equal to max(cwnd/2, 2). The recover_ saves the highest sequence

number of transmitted packets.

Step2: Retransmit the lost packets and add three maximum segment size (MSS) to the cwnd.

Step3: When receiving a dup-ACK each time, the TCP sender increases the cwnd by one MSS

and sends a new packet.

Step4: When the sender receives a new ACK acknowledged, all the packets are recorded in

recover_. Both the first lost packet and the packets transmitted after three dup-ACKs are

acknowledged. NewReno will decrease the cwnd to min(ssthresh, cwnd+1) and exit the FR phase.

Where the ssthresh is set to the value recorded in Step1. Otherwise, if the ACK only acknowledges

part of the transmitted packets, namely a partial-ACK, the cwnd will be decreased to a value equal

to the difference of the cwnd and the number of partial acknowledged packets. Then the TCP sender

resets the timeout timer and goes back to Step3.

Though NewReno is to avoid the performance degradation caused by multiple packets losses

within a window, it still has deficiencies: (i) NewReno can not effectively get the enough

information of the network bandwidth after receiving a partial-ACK, and resulting in low data

transmission efficiency. (ii) The value of cwnd for exiting FR phase in Step4 has been determined

before NewReno goes into FR phase, namely the ssthresh in Step1. The cwnd is not suitable for the

network states when there are packet losses again during FR phase, which will result in a frequent

change between the FR and non-FR phase.

TCP VenoDR

576

TCP VenoDR has two improvements.The one is an improved loss differentiation mechanism with

an adaptive queue length threshold based on TCP Veno, and the other is the DR mechanism on the

basis of TCP NewReno.

Estimating the queue length. We note that a packet’s round-trip time (RTT) consists of three

parts: queuing delay, transmission delay and propagation delay. The sum of transmission delay and

propagation delay is generally a constant, it equals to the BaseRTT. And the queuing delay of

bottleneck link is equal to L/BW, where L means the queue length in bottleneck link, BW means the

bottleneck bandwidth. Therefore, the RTT can be formulated as Eq. 2, and then we can deduce the

formula of L as Eq. 3.

RTT = L/BW + BaseRTT. (2)

L = (RTT - BaseRTT) BW. (3)

Veno gets the coarse-grained estimation of bottleneck router backlogged packets number N, and

VenoDR estimates the queue length L in bottleneck router based on RTT, BaseRTT and BW.

Loss differentiation based on adaptive threshold. In order to estimate the congestion status of

bottleneck link, we set an adaptive queue length threshold T:

T =α Lmax. (4)

Lmax = (RTTmax - BaseRTT) BW. (5)

where Lmax is the largest value of L calculated by TCP sender, and α is a constant between 0 and 1.

Here α is an experience value which is set to 0.55 to maximize the throughput and fairness of

VenoDR.

When three dup-ACKs are received, if L<T, VenoDR regards the packet loss as a random loss

and reduce ssthresh by a smaller amount (1/5). Otherwise, VenoDR assumes the packet loss caused

by congestion and reduces the ssthresh by half. From Eq. 3 and Eq. 4, we note that L and T both

have the factor BW, and divide both sides of the inequality L<T by BW and the inequality will still

be true. Therefore, the BW is not necessary and it is set to 1.

Dynamic recovery mechanism. In order to solve the problem discussed in 2.2, we propose a DR

mechanism based on the FR algorithm in NewReno and the flowchart of DR mechanism is shown

in Fig.1.
After 3 dup-ACKs After 3 dup-ACKs

Dup-ACK?Dup-ACK?

Go to DR phase

Settings:
1. recover_=maxseq_;
2. loss differetiation:

if(L<T) ssthresh=cwnd *4/5;

 else ssthresh=cwnd*1/2;
3. retransmit packt loss; recover_DR=recover_;
4. cwnd_DR=0; dup_max=outsanding;

Settings:
1. recover_=maxseq_;
2. loss differetiation:

if(L<T) ssthresh=cwnd *4/5;

 else ssthresh=cwnd*1/2;
3. retransmit packt loss; recover_DR=recover_;
4. cwnd_DR=0; dup_max=outsanding;

Y

cwnd deflation mechanism(First RTT):
1. output a new packet every other dup-Ack;
2. record the dup-ACK: ++dupwnd;
3. if(dupwnd>dup_max) retransmit again;
4. if (a partial-ACK arrives) cwnd_DR=dupwnd/2;

cwnd deflation mechanism(First RTT):
1. output a new packet every other dup-Ack;
2. record the dup-ACK: ++dupwnd;
3. if(dupwnd>dup_max) retransmit again;
4. if (a partial-ACK arrives) cwnd_DR=dupwnd/2;

bandwidth detecting mechanism:
1. retransmit lost packets corresponded by partial-ACK;
2. output a new packet every dup-ACK;
3. cwnd_DR += 1/cwnd_DR; 4. recover_=maxseq_;

bandwidth detecting mechanism:
1. retransmit lost packets corresponded by partial-ACK;
2. output a new packet every dup-ACK;
3. cwnd_DR += 1/cwnd_DR; 4. recover_=maxseq_;

new ACK
Seqno_>recover_

new ACK
Seqno_>recover_

Seqno_<=recover_DRSeqno_<=recover_DR

Exit DR phase:
1. dupwnd=0; 2. cwnd=cwnd_DR;
3. cwnd_DR=0;

Exit DR phase:
1. dupwnd=0; 2. cwnd=cwnd_DR;
3. cwnd_DR=0;

Packet lost in recovery phase:
1. ssthresh=cwnd_DR/2;
2. cwnd_DR=0;
3. recover_DR=recover_;
4. dup_max=outstanding;

Packet lost in recovery phase:
1. ssthresh=cwnd_DR/2;
2. cwnd_DR=0;
3. recover_DR=recover_;
4. dup_max=outstanding;

Y

Y

N

N

Partial-ACK

N

Fig.1 Flowchart of DR mechanism (including the fast retransmit)

577

The DR mechanism adopts a dynamic adjusted variable cwnd_DR, namely the packets

transmitted in the current RTT, but not the cwnd determined before FR phase in NewReno. We note

that the cwnd used in FR can’t reflect the number of packets transmitting currently in networks. It

represents all the transmitted packets, which consists of both the packets transmitted in current RTT

(cwnd_DR) and the packets transmitted in the previous RTT including the lost packets and

unacknowledged packets. Only the first part of the cwnd should be adopted to adjust the value of

congestion window when TCP exits the FR phase. Therefore, DR mechanism uses cwnd_DR to

control the recovery and passes the value of cwnd_DR back to cwnd when it exits the DR phase.

The initialization and dynamic update of cwnd_DR are shown in Fig.1. Specific meanings of the

other parameters are given below. The variable recover_ denotes the highest sequence number

before the most recent dup-ACK received. The recover_DR means the highest sequence number

when the first packet loss of the previous RTT happened. The dup_max represents the number of

transmitting and unacknowledged packets. The dupwnd records the number of dup-ACKs during

cwnd deflation phase. And seqno_ means the sequence number indicated by the current ACK.

The DR mechanism contains two parts compared to NewReno: cwnd deflation mechanism and

bandwidth detecting mechanism. The first part is to recover the first packet loss, including the

situation that the packet lost again during retransmission period (when dupwnd>dup_max), and to

give the rights of congestion control back to cwnd through passing cwnd_DR to cwnd when it exits

the DR, which will realize the deflation of cwnd. When the sender receives a partial-ACK, which

means multiple packets are lost within a window, it enters the bandwidth detecting phase. The

bandwidth detecting phase can not only recover the rest of packet losses corresponded by partial-

ACK but also detect the available network bandwidth by adopting an additive increase algorithm,

namely increasing the cwnd_DR by one MSS every RTT. Then if a partial-ACK is received, we

judge whether the recovery phase with packet loss or not by comparing the seqno_ and recover_DR.

If seqno_<=recover_DR, there are packet losses in DR again, we need to update the cwnd_DR,

recover_DR and dup_max. Then the recovery will go back to the cwnd deflation phase. Otherwise,

it will go to the bandwidth detecting phase. The sender will exit the DR phase when all packet

losses are recovered and pass the value of cwnd_DR back to cwnd as shown in Fig.1.

Performance Evaluation

We evaluate the performance of TCP VenoDR using NS-2 network simulator in throughput,

bandwidth utilization, fairness and friendliness compared with the other three representative

algorithms, namely TCP Reno, TCP Veno and TCP WestwoodNR [10]. We use the topology

depicted in Fig. 2 to simulate the throughput performance, and the topology shown in Fig. 3 to

evaluate the fairness and friendliness performance.

S DBS

10Mbps
45ms

2Mbps
0.01ms

100Mbps
45ms

20Mbps
0.01ms

S1

Sn

D1

Dn

10 10

 Fig.2 Topology for throughput Fig.3 Topology for fairness and friendliness

Throughput performance. The connection between the source node and base station is an error

free link. The base station is linked to the wireless destination node with BER varying from 0.01%

to 10%. The link bandwidth and one-way delay are shown in Fig.2. A single TCP connection runs a

FTP application from 0s to 100s. The maximum segment size is 1400 bytes. We run the simulation

for VenoDR, Veno, Reno and WestwoodNR respectively. The router buffers are equal to the pipe

size.

578

0.01 0.1 1 3 5 7.5 10
200

400

600

800

1000

1200

1400

1600

1800

2000

Loss rate (% packet loss)

T
h
ro

u
g
h
p
u
t/

K
b
p
s

Reno

Veno

VenoDR

WestwoodNR

0 10 20 30 40 50 60 70 80 90 100

0

200

400

600

800

1000

1200

1400

1600

time/s

T
h
ro

u
g
h
p
u
t/

K
b
p
s

Reno

Veno

VenoDR

WestwoodNR

 Fig.4 Mean throughput comparison Fig.5 Comparison with 2% BER

Fig.4 shows the mean throughput comparison of 4 algorithms under different wireless BER from

0.01% to 10%. When the loss rate is smaller than 0.5%, the throughput curves are almost the same.

From 0.5%, TCP VenoDR is superior to other 3 algorithms along with the growth of BER,

especially when the BER is higher than 1%. Fig. 5 shows the throughput comparison in real time

with 2% BER. It is obvious that the throughput of VenoDR at 100s outperforms Veno by 44.1%,

WestwoodNR by 47.0% and Reno by 113.8%. And the advantages of VenoDR still exist in various

bottleneck bandwidths as shown in Fig. 6.

2 4 6 8 10 12 14 16 18 20
500

1000

1500

2000

2500

3000

Bottleneck bandwidth (Mbps)

T
h
ro

u
g
h
p
u
t/

K
b
p
s

Reno

Veno

WestwoodNR

VenoDR

0.5 1 2 3 4 5

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

Loss rate (% packet)

F
a
ir
n
e
s
s
 i
n
d
e
x

Reno

Veno

VenoDR

WestwoodNR

Fig.6 Comparison of various BW Fig.7 Fairness index comparison

Fairness and friendliness performance. TCP fairness means that multiple senders running the

same TCP algorithm share the network resources fairly when the network congestion occurs. As

shown in Fig. 3, there are a total of 10 same TCP flows share a 20Mb/s bottleneck link. The BER at

the wireless bottleneck link varies from 0.5% to 5%. We simulate the four TCP schemes respectively

and calculate the fairness index proposed in [11] to evaluate the fairness of TCP schemes. The

results are shown in Fig. 7.

The fairness indexes of VenoDR with different BER are all higher than 0.996, which is also

higher than the other three algorithms. That means VenoDR has a fairly satisfactory fairness

performance. Moreover, we can see from Fig. 8, which shows the total throughput of 10 TCP

VenoDR connections compared to other three TCP algorithms, the throughput of TCP VenoDR is

much higher than others. In conclusion, TCP VenoDR not only has a better fairness but also provide

the highest bandwidth utilization compared to others.

579

0.5 1 2 3 4 5
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Loss rate (% packet loss)

T
o
ta

l
th

ro
u
g
h
p
u
t/

K
b
p
s

Reno

Veno

VenoDR

WestwoodNR

1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

3500

Number of competing Reno flows

M
e
a
n
 t

h
ro

u
g
h
p
u
t/

K
b
p
s

Reno

FairShare

VenoDR

 Fig.8 Bandwidth utilization Fig.9 Friendliness of VenoDR towards Reno

A friendly TCP scheme should be able to coexist with other TCP variants. We simulate the

friendliness of VenoDR towards Reno using the topology with total 10 TCP connections of two

schemes sharing a 20Mbps bottleneck in Fig.3. The simulation results are shown in Fig.9, where the

horizontal axis represents the number of competing Reno connections, the remaining connections

being VenoDR. The vertical axis represents the average throughput of Reno and VenoDR

respectively. From Fig. 9 we can see that VenoDR achieves a little higher throughput than its fair

share, and the throughput of Reno is below the fair share but within a tolerable range. Therefore,

VenoDR is friendly towards Reno.

Conclusions

In this paper, we have described a novel congestion control mechanism called TCP VenoDR with

adaptive queue length threshold and DR mechanism. It utilizes the RTT measurements to estimate

the queue length of bottleneck link and differentiates packet loss based on an adaptive threshold. Its

DR algorithm can probe the available bandwidth of the network, recover not only the first packet

loss but also the packets lost later in the recovery period, and adopt a dynamically adjusted variable

to control the congestion window when it exits the recovery phase. Simulation results by NS-2

show that VenoDR provides a significant performance improvement in throughput, bandwidth

utilization and fairness over other TCP variants. It is also friendly towards the traditional TCP Reno.

References

[1] M. Allman, V. Paxson, W. Stevens. TCP congestion control. RFC2581, Apr. 1999.

[2] Yanxiang Z, Fang S, Mingyan K, A fuzzy packet loss differentiation algorithm based on ack-

timeout times ratio in heterogeneous network. Communications and Mobile Computing (CMC),

International Conference on. IEEE 1, pp. 453-457, 2010.

[3] Geethu Wilson, Robin Cyriac., An Enhancement to TCPW BBE by Modifying the Bandwidth

Estimation Using Modified EWMA. International Journal of Advanced Research in Computer

Science and Software Engineering, 2(6), pp. 278-281, June 2012.

[4] K. Xu, Y. Tian, and N. Ansari, Improving TCP Performance in Integrated Wireless

Communications Networks. Journal of Computer Networks, 47, pp. 219–237, February 2005.

[5] Fu C P, Liew S C., TCP Veno: TCP enhancement for transmission over wireless access

networks. IEEE Journal of Selected Areas in Communications, 21(2), pp. 216-228, 2003

580

[6] S. Floyd, T. Henderson. The NewReno modification to TCP’s fast recovery algorithm. RFC2582,

Apr. 1999.

[7] M. Mathis, J, Mahdavi, S. Floyd, and A. Romanow. TCP selective acknowledgement options.

RFC2018, Oct. 1996.

[8] M. Mathis, J. Mahdavi., Forward acknowledgement: refining TCP congestion control.

Proceedings of the SIGCOMM, August 1996.

[9] L.S. Brakmo, S.W. O’Malley, L.L. Peterson. TCP Vegas: New techniques for congestion

detection and avoidance. In Proc. ACM SIGCOMM, Oct 1994.

[10] Ns-2 modules of TCP Westwood with the New Reno feature [Online]. Available:

http://193.204.59.68/mascolo/tcp%20westwood/modules.htm

[11] Jain R, Chiu D M, Hawe W R. A quantitative measure of fairness and discrimination for

resource allocation in shared computer system. Eastern Research Laboratory, Digital

Equipment Corporation, 1984.

581

