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Abstract. A mathematical model of the propagation of laser radiation inside Luneburg lens in relative 

coordinate frame of reference has been developed. The trajectory of the beam propagation inside the 

lens, as well as angles of incidence, refraction and reflection have been defined. In addition to this on 

the basis of the data received we plotted some charts with the help of which one could determine the 

amount of the aberration of the beam, operation region of the lens, deviation of the beam from the 

detector after its propagation in the lens. It was shown that the deviation of the beam in the plane of 

the registration on the ground does not exceed 200 meters.  

Introduction 

Recently a new type of gradient lenses – Luneburg lens has been widely adopted. The index of 

refraction in this lens is not permanent changing from point to point. The law of variation of the index 

of refraction is usually chosen in such a way that incoming parallel beams after their propagation 

through the lens are focused on the other side of the lens in one point. Then the reflected beams form 

beams parallel to the incident ones. 

Luneburg lenses are usually applied in radio-location. It was used for the first time in the American 

radar AN/SPG-59 as a beam shaper at the beginning of 1960s and after it was widely adopted. 

In the work [1] authors described a scheme of the antenna, in which Luneburg lens of different 

forms could be used (spherical, cylindrical, multy-layer were calculated by their mathematical 

model). 

In another work [2] was offered an integrated design of Luneburg lens, which was made of silicone 

with ultra-high gradient index. Such lens will have low losses, high index contrast and with the help 

of integrated nanophotonic waveguides one could obtain high-precision connection between the fibre 

and the chip. 

In the patent [3] authors described a design of the lens reflector with cross polarization. Luneburg 

lens was used as a reflector with spherically imperfect reflection surface, which consists of 

conductive stripes placed at an angle 45  to the polarization of the incident wave. 

In the optical range Luneburg lens replaces triple prisms, which are used as angular reflectors on 

the board of up-to-date satellite navigation systems such as GLONASS, GPS and GALILEO. To 

achieve large effective area of reflection of the incident wave it is required a matrix consist of large 

amount of the angular reflectors. 

If to use Luneburg lens as a reflector, the power of reflected radiation will be compared to the 

power of the reflected radiation obtained by a similar matrix of angle reflectors. It is worth noting that 

the calculation of such lens is usually made without taking into account of the effects of the optics of 

moving media. These effects could exercise a significant influence on the accuracy of the 

determination of the spatial-temporal coordinates of the spacecraft.  
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Fig. 1. The trajectory of the beam inside of the lens. 

Statement of the Problem 

In this article we introduce the algorithm of calculation of the beam propagation in the Luneburg 

lens, which was used on board nanosatellite BLIZ [4]. This satellite was represented as an 

autonomous spherical glass laser system, which was located at geosynchronous solar orbit for 3 years. 

Different scientific problems connected with geophysics, geodynamics and theory of relativity were 

investigated with the help of this system. It was also used for solving different problems of high 

precision calculations and long-term forecasting of orbits of specialized geodetic navigation space 

vehicles. 

The orbital altitude of this satellite was h=835 km. The Luneburg lens, which was used on board of 

this satellite, consisted of two layers (Fig. 1). The radius of the central orb was 𝑅2 = 53.5 𝑚𝑚 and it 

was made of heavy flint with the index of refraction 𝑛2 = 1.7647. The radius of the external 

meniscus was 𝑅1 = 85 𝑚𝑚 and it was made of light crown with the index of refraction 𝑛1 = 1.4729. 

One half of the external meniscus was mirrored. The speed of rotation around the axis perpendicular 

to the orbit plane of this satellite was 10 rotations per minute. The wavelength of the laser radiation 

was 𝜆 = 532 𝑛𝑚. 
It was necessary to calculate 13 angles and trajectory of the laser beam inside of The beams were 

falling from the right as well as from the left side of the lens. the lens according to Fig. 1 taking into 

account the trajectory of the satellite. The beams were falling from the right as well as from the left 

side of the lens. 

The Description of the Propagation of Electromagnetic Radiation Inside of Luneburg Lens 

We used the solution of the dispersion equation which was obtained by Bolotovsky B. M. and 

Stoliarov S. N. [5] and was checked in [6,7]. 

In case if the falling wave is specified, the tangential component of the wave vector can be defined 

as �⃗� 𝑡 = 𝐼 𝑡 and the following expression is true 𝐼1 = 𝑘𝑛𝜈 − 𝑤𝑒 , where 𝑘𝑛 = (�⃗� , 𝜈 ),�⃗�  – normal unit 

vector to the boundary, which is directed from the first medium to the second one. 
 

     (𝑤1)1,2 = −𝐼1
[1 + 𝜅1𝛾1

2(𝛽 − 𝛽1𝑛)(𝛽1𝑛 + (𝛽 1𝑡 , 𝑑 )𝛽)] ± 𝛽𝑄1

1
2

(1 − 𝛽2) − 𝜅1𝛾1
2(𝛽 − 𝛽1𝑛)

2
,                                                                                             (1) 
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      𝑄1 = [1 + 𝜅1𝛾1
2(1 − 𝛽1𝑛

2 )] − 

 −𝑑 2[(1 − 𝛽2) − 𝜅1𝛾1
2(𝛽 − 𝛽1𝑛)

2] + 

               +𝜅1𝛾1
2(𝛽 1𝑡 , 𝑑 )[2(1 − 𝛽𝛽1𝑛) + (1 − 𝛽2)(𝛽 1𝑡 , 𝑑 )], 

 

     𝑑 = 𝑐
𝐼𝑡

𝐼1
,          𝜅1 = 𝜀1𝜇1 − 1,          𝛽 =

𝜈

𝑐
,          𝛽1𝑛 =

𝑢1𝑛

𝑐
,  

 

      𝛽1𝑡 =
𝑢1𝑡

𝑐
,        𝛾1

2 =
1

1 − 𝛽1
2 ,          𝛽1

2 =
𝑢1

2

𝑐2
= 𝛽1𝑛

2 + 𝛽1𝑡
2 ,     

 

𝑢1𝑛 and 𝑢1𝑡 are normal and tangential components of the speed of one medium to the interface. From 

the formula (1) we can obtain two values for the frequency in the first medium, which are expressed 

in terms of invariants 𝐼1 and 𝐼 𝑡, parameters of the medium (𝜀1, 𝜇1, 𝑢1 ) and velocity 𝜈  of the interface. 

One of the obtained values defines the frequency of the incident wave and the other one – the 

frequency of the reflected wave. If the frequencies (𝑤1)1,2  are known, then we can obtain the 

corresponding values for the normal component of the wave vector 
 

     (𝑘1𝑛)1,2 = [(𝑤1)1,2 + 𝐼1]𝜈
−1 = 

                  = −𝐼1
[𝛽+𝜅1𝛾1

2(𝛽−𝛽1𝑛)(1+(�⃗⃗� 1𝑡,𝑑 ))]±𝑄1

1
2

𝑐[(1−𝛽2)−𝜅1𝛾1
2(𝛽−𝛽1𝑛)2]

                                                                                                                               (2) 

 

We can also write a similar expression for the wave vector for the second medium.  

One should keep in mind the fact that when light is passing through a medium the following 

parameters will be changing: frequency, wave vector and speed of light. The new value of the wave 

vector will be defined as 
 

       𝑘𝑖 = √𝑘𝑛𝑖
2 + 𝑘𝑡𝑖

2                                                                                                                                                                                (3) 

 

The new value of the frequency will be calculated from 
 

       𝑤𝑖 = 𝑘𝑛𝑖𝛽𝑐0 + 𝐼1,                                                                                                                                                                            (4) 
 

where 𝑐0 is the speed of light in vacuum. 

The new value of the speed of light will be as follows 
 

       𝑐𝑖 =
𝑤𝑖 cos(𝜗𝑖)

|𝑘𝑛𝑖|
,                                                                                                                                                                               (5) 

 

where 𝑖 = 0, 1,2, … , 6. 
To define the coordinates of the i – point we need to write the equation of the circle 

 

     (𝑥𝑘 − 𝑣𝑥(𝑡𝑘 + 𝑇))2 + (𝑦𝑘 − 𝑣𝑦(𝑡𝑘 + 𝑇))
2
= 𝑅1.2

2 , 𝑘 = 1,2, … ,6                                                                                 (6) 

 

and the equation of the beam in parametric form 
 

     {
𝑥𝑘 = 𝑥𝑘−1 ± 𝑐𝑖𝑡𝑘𝑐𝑜𝑠(𝜑𝑖)

𝑦𝑘 = 𝑦𝑘−1 ± 𝑐𝑖𝑡𝑘𝑠𝑖𝑛(𝜑𝑖),
                                                                                                                                                               (7) 

 

where 𝜑𝑖 – is some auxiliary angle, the calculation of which will be shown below; 

𝑇 = ∑ 𝑡𝑘−1
𝑖
𝑘=1  – is the total value of time, during which the center of the lens is moved when 

considering the point k. 

The sign in equation (7) will be chosen considering the beam before reflection (“+”) in point 3 or 

after it (“-”). 
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To determine the time of beam propagation between two points we need to substitute equation (7) 

in (6) and solve it with relation to time 
 

      𝑎1,2𝑡
2 + 𝑏1,2𝑡 + 𝑐 = 0,                                                                                                                                                                    (8 

where in case of beam propagation in the interval 1-3 before its reflection in point 3 the coefficients 

are  
 

    a1 = (с sin(𝜑𝑖) − 𝑣𝑦)
2 + (с cos(𝜑𝑖) − 𝑣𝑥)

2                                                                                                                            (9𝑎) 

 

   𝑏1 = 2(−𝑇𝑣𝑥 + 𝑥𝑘−1)( с cos(𝜑𝑖) − 𝑣𝑥) + 

           + 2(−𝑇𝑣𝑦 + 𝑦𝑘−1)(с sin(𝜑𝑖) − 𝑣𝑦)    (9𝑏) 

 

We can write down the same expressions for 𝑎2 and 𝑏2 in the interval of points 3-6 after the 

reflection of the beam, but we should take into account that the sign before coefficient c will be 

changed to “-”.  

Coefficient c for both cases will be the same 
 

      с = (𝑇𝑣𝑥 + 𝑥𝑘−1)
2 + (𝑇𝑣𝑦 + 𝑦𝑘−1)

2
− 𝑅1,2

2 ,                                                                                                                          (10) 

 

where 𝑅1,2 – are radii of the outer meniscus and inner orb; the selection of the radius depends on the 

intersection point of the beam with the lens. 

Then the desired solution of the equation (8) according to the beam propagation in the interval of 

points from 0 to 3 before its reflection in point 3 will be as follows 
 

      𝑡1.2 =
−2(−𝑇𝑣𝑥 + 𝑥𝑘−1)( с cos(𝜑𝑖) − 𝑣𝑥)

2 ((с sin(𝜑𝑖) − 𝑣𝑦)
2
+ (с cos(𝜑𝑖) − 𝑣𝑥)

2)
− 

                −
2(−𝑇𝑣𝑦 + 𝑦𝑘−1)( с sin(𝜑𝑖) − 𝑣𝑦)

2 ((с sin(𝜑𝑖) − 𝑣𝑦)
2
+ (с cos(𝜑𝑖) − 𝑣𝑥)

2)
± 

                ±
√𝑏1

2 − 4a1𝑐

2 ((с sin(𝜑𝑖) − 𝑣𝑦)
2
+ (с cos(𝜑𝑖) − 𝑣𝑥)

2)
                                                                                                                 (11) 

 

In case the beam is reflected from the inner-mirrored side of the meniscus in point 3, we will obtain 

the same expression but the sign before coefficient c will be changed to the “-” except for 

√𝑏2
2 − 4a2𝑐. 

The two values of time determined from expression (11) are substituted in (7) yielding two pairs of 

coordinates (x,y). After this we should choose the right one in accordance with   the geometry of the 

problem being solved. 

To evaluate the angle between the normal and the falling beam for every point we should write the 

equation of the held normal to the circle (Fig. 1) [8] 
 

      𝑦 − 𝑦0 = −
1

𝑦′(𝑥0)
(𝑥 − 𝑥0),                                                                                                                                                       (12) 

 

where 𝑦′(𝑥0) is the differential quotient of the equation of the curve at the point of observation. 

With evaluated 𝑦′(𝑥0), we need to reduce equations (12) and (7) to canonical form 
 

      
𝑦 − 𝑦0

𝑦0 − 𝑣𝑦(𝑡𝑘 + 𝑇)
=

𝑥 − 𝑥0

𝑥0 − 𝑣𝑥(𝑡𝑘 + 𝑇)
                                                                                                                                         (13) 

 

     
𝑦 − 𝑦0

сsin (𝜑𝑖)
=

𝑥 − 𝑥0

с cos(𝜑𝑖)
                                                                                                                                                                   (14) 

 

Taking into account these two equations (13) and (14) we can define the desired angle 𝜗 
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      cos(𝜗) =
|(𝑥0 − 𝑣𝑥(𝑡𝑘 + 𝑇))с cos(𝜑𝑖) + (𝑦0 − 𝑣𝑦(𝑡𝑘 + 𝑇)) с sin(𝜑𝑖)|

𝑐𝑖√(𝑥0 − 𝑣𝑥(𝑡𝑘 + 𝑇))
2
+ (𝑦0 − 𝑣𝑦(𝑡𝑘 + 𝑇))

2
                                                                        (15) 

Then we should calculate auxiliary angles 𝜑𝑗. For this purpose, we need to write down the equation 

of the held normal at i-point and the equation of the beam, crossing this point 
 

     𝑦 = 𝑡𝑔(𝜑𝑗)𝑥 + (𝑦0 − 𝑡𝑔(𝜑𝑗)𝑥0)                                                                                                                                               (16) 

 

    𝑦 =
𝑦0 − 𝑣𝑦(𝑡𝑘 + 𝑇)

𝑥0 − 𝑣𝑥(𝑡𝑘 + 𝑇)
𝑥 − (

𝑦0 − 𝑣𝑦(𝑡𝑘 + 𝑇)

𝑥0 − 𝑣𝑥(𝑡𝑘 + 𝑇)
𝑥0 − 𝑦0)                                                                                                           (17) 

 

The slope coefficients of the normal and the beam will be determined as 
 

      𝑠1 =
𝑦0 − 𝑣𝑦(𝑡𝑘 + 𝑇)

𝑥0 − 𝑣𝑥(𝑡𝑘 + 𝑇)
, 𝑠2 = 𝑡𝑔(𝜑𝑗), 𝑗 = 0,… ,5                                                                                                                     (18) 

 

The angle between two lines can be defined as [8]  
 

      𝑡𝑔(𝜗𝑖+1) =
𝑠1 − 𝑠2

1 + 𝑠1𝑠2

, 𝑖 = 0, … ,10                                                                                                                                     (19) 

 

As the angle 𝜗𝑖+1 is known, we can find the expression for the auxiliary angle 𝜑𝑗 from the equation 

(19) 
 

     𝜑𝑗 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑡𝑔(𝜗𝑖+1)(𝑡𝑘 + 𝑇)𝑣𝑥 − 𝑡𝑔(𝜗𝑖+1)𝑥 + (𝑡𝑘 + 𝑇)𝑣𝑦 − 𝑦

𝑡𝑔(𝜗𝑖+1)(𝑡𝑘 + 𝑇)𝑣𝑦 − 𝑡𝑔(𝜗𝑖+1)𝑦 − (𝑡𝑘 + 𝑇)𝑣𝑥 + 𝑥
)                                                                              (20) 

 

And the last step will be the determination of the slope of the normal to the Ox axe. This angle is 

essential for the determining of the deviation of the beam at the output of the lens in accordance with 

the incident beam. 

To calculate this angle we need to take the arctangent from 𝑠1 
 

      𝜃𝑚 = arctan(𝑠1) = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦0 − 𝑣𝑦(𝑡𝑘 + 𝑇)

𝑥0 − 𝑣𝑥(𝑡𝑘 + 𝑇)
) , 𝑚 = 0…6                                                                                     (21) 

 

After this we need to compare two values 𝑑𝜗0, 𝑑𝜗, which will be calculated according to the 

following expressions (Fig. 1) 
 

      𝑑𝜗0 = |𝜗0 + 𝜃0| − |𝜗13 + 𝜃6|;  d𝜗 = |𝜗0 + 𝜃0| − |𝜗13 + 𝜃6|,                                                                                            (22) 

 

where 𝑑𝜗0 is the difference between the sum of the incident angle 𝜗0 at the point where the beam 

enters the lens, and the angle 𝜃0 defining the normal at point 0, and the sum of the refraction angle 

𝜗13 at the point where the beam left the lens, and the angle 𝜃6 defining the normal at the point 6 (the 

lens does not have speed); 

𝑑𝜗 is the difference between the sum of the incident angle 𝜗0 at the point where the beam enters 

the lens, and the angle 𝜃0 defining the normal at the 0 point, and the sum of the refraction angle 𝜗13 at 

the point  where the beam left the lens, and the angle 𝜃6 defining the normal at point 6 (the lens have 

the speed of 7500 m/c); 

If we evaluated 𝑑𝜗0, 𝑑𝜗 previously, we can define the deviation of the beam relative to the detector 

after its reflection by the Luneburg lens in accordance with its movement speed 
 

      𝑑𝑙0 = 𝑡𝑔(𝑑𝜗0)ℎ                                                                                                                                                                             (23) 

 

     𝑑𝑙 = 𝑡𝑔(d𝜗)ℎ,                                                                                                                                                                                 (24) 
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where 𝑑𝑙0  is the distance of the beam deviation from the emitter after its reflection by the lens and 

return to the ground in case the lens does not move; 

𝑑𝑙 is the distance of  the beam deviation from the emitter after its reflection by the lens and return to 

the ground in case the lens moves with the speed of 7500 m/c; 

Analogous calculations were made for the case when the beam was falling from the right side. 

Fig. 2. 𝑑𝜗0 и 𝑑𝜗 dependence on the incident angle 𝜗 (𝑑𝜗0(𝜗) – is the graphic plotted for the case when the lens have 

a speed; 𝑑𝜗(𝜗) – is the graphic plotted for the case when the lens is rested). 

Numerical Data 

On the basis of the received data we plotted the following charts: 𝑑𝜗0(𝜗), 𝑑𝜗(𝜗) (Fig. 2). 

In Figure 2 we introduce dependences𝑑𝜗0(𝜗), 𝑑𝜗(𝜗), which are up to the incident angle 𝜗 with 

and without the speed of the lens. If we look at the obtained graphs, we will notice the interval of 

incident angles in which 𝑑𝜗0 𝑎𝑛𝑑 𝑑𝜗 are negative. It can be explained by small oscillations of 

coordinates of point 3. This leads to the offset of points 4, 5, 6. 

According to the expression (21) when we determine the angle 𝜃𝑚 we calculate the arctangent of 

the slope coefficient of the normal 𝑠1. This coefficient depends on the values of the coordinates, 

which we calculated earlier. The value of the normal angle will be slightly different from the normal 

angle   at the entrance point of the beam. If we compare the coordinates of the entrance of the beam 

and coordinates of its exit from the lens, we will notice that the exiting coordinates are slightly 

different from the entrance coordinates. Because of this difference, there appeared a negative area on 

the graphs. 

Starting with some value of the incident angle, 𝑑𝜗0 𝑎𝑛𝑑 𝑑𝜗 begin to increase dramatically. This 

area is not so interesting, because of big values of incident angles, which cause big values for the 

deviation of the beam relative to the detector after its reflection by the lens. 

The presence of the speed of the lens leads to the symmetry breakdown of the beam propagation 

inside the lens which is observed when the lens is at rest. 

With the help of the calculated data and formulas (23-24) we determine the cross-section of the 

beam returning to the ground. In the interval of angles of incidence from -2.5 to -1.5 and from 1.5 to 

2.5 we obtained the minimum deviation of the beam returned to the ground and it was not more than 

100 meters. 

Conclusions 

We plotted the following charts: 𝑑𝜗0(𝜗), 𝑑𝜗(𝜗). If we analyze the graphs shown in the figure, we can 

determine the interval of angles (from -2.5 to -1.5 and from 1.5 to 2.5) in which the intensity of the 
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beam registered by the detector will be maximum. It is also possible to obtain some estimations of the 

cross-section of the beam returning to the ground. 

From Figure 2 it is possible to define the amount of aberration of the beam after its passing through 

the lens and to see the area in which this value will be minimum. 

It is very important to take into account effects of the optics of the movable medium, while 

evaluating such systems. The calculation of the lens is shown that effects cause the deviation of the 

beam in the zone of detection for about hundreds of meters, which is essential in defining time and 

cords of the satellites, such as GLONASS. We are planning to expand our mathematical model and 

take into account effects of polarization of the radiation [9, 10], relativistic effects etc. 
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