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Abstract. A new algorithm of dynamic local Adaptive Mesh Refinement (AMR) with support for 

arbitrary unstructed meshes, as well as for two and three dimensional computation is developed. 

The new mesh adaptation based on the discretization matrix eigenvalues estimation by Gershgorin 

Circle Theorem. The implementation of the algorithm is done within the framework of the 

OpenFOAM library for Computational Continuum Mechanics (CCM) using C++ programming 

language with modern policy based design for high program code modularity. It is possible to 

combine mesh adaptation criteria. Two numerical examples illustrate the effectiveness of new 

adaptive mesh refinement algorithm. 

Introduction 

Finite Volume Method (FVM) is a mesh based method where the computational domain is 

subdivided into several cells, together creating a mesh. When performing a computation for a 

general Computational Fluid Dynamics (CFD) case it is impossible to know a priori how to design 

an optimal mesh, i.e. a mesh with minimal number of cells still satisfying the defined tolerance of 

the computational error. For transient problems, where the flux is unsteady and the points of interest 

can reposition during the simulation, this becomes most problematic since a static uniform mesh 

would need to be very fine to satisfy the error tolerance throughout the whole simulation. To solve 

this dilemma a scheme where the mesh self-adapts its structure upon some criteria can be used. The 

refinement based commonly on the physical quantity gradient field [1], [2]. Our algorithm based on 

discretization matrix eigenvalues estimation [3], which will mark cells to be refined or likewise 

mark cells to be unrefined. This approach is a more effective use of cells and thereby lower 

computational cost. 

Discussed Problems 

After having used numerical methods such as FVM to discretize governing equations of unknown 

variables, we usually obtain the form of the system of algebraic equations as shown in the equation 

below.  

bAx= ,                                                                                                                                       (1) 

 

where A  – square sparse nn  discretization matrix, x  – 1n  column vector of unknown variable, 

b  – 1n  right-hand column vector. 

As discussed by Voevodin [4] error estimation 
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where AAA /= , bεb /=  and A  - perturbation matrix A , ε  – perturbation right-

hand column vector of equation (10),   AAA
1К  – so-called condition number. Also, we 

will use equation 
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where max , min  – maximum and minimum eigenvalues of A , respectively. From equations (2), (3) 

we can see that condition number plays important role in (1). Condition number shows how much 

errors are propagated. cost. 

The Estimation Algorithm of Eigenvalues 

The eigenvalues estimation algorithm, which we use in our work, based on Gershgorin Theorem 

and Gershgorin disk definition [5]. 

Every eigenvalue of matrix nnA  satisfies: 
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where  ni ,...,2,1 . 

Let 
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ijid A . Then the set  :|i ii iD z z d   A  is called the ith Gershgorin disc of the 

matrix A . This disc is the interior plus the boundary of a circle. The circle has a radius id  and is 

centered at (the real part of iiA , the imaginary part of iiA ). 

In our work as a grid refinement criterion was used a scalar field 
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where  1,2,...,i n . Then mesh adaptation was made based on this scalar field. The normalization 

of field F  is performed before each iteration: 
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Thus the values of the field F  are within the semi-interval (0;1] and it let us to set in 

OpenFOAM to refine mesh for cells with iF  close to 1 and unrefined cells with iF  around 0. Values 

of field F  decrease while refining mesh and increase while coursing mesh. 

Computational Examples and Analysis 

In order to illustrate feasibility and effectiveness of the algorithm, we use following two examples 

[6]. Both examples use modified laplacianFoam OpenFOAM solver called laplacianFoamF. New 

solver has ability to work with dynamic mesh, which allows to adapt mesh. 

We compare AMR based on temperature scalar field T , i.e. based on temperature gradient 

minimization (AMR T) and AMR based on described above scalar field F  (Eq. 6) – (AMR F). For 

every example we tried to get about the same amount of cells. 

Initial geometry of first example, as shown on Fig. 1, thin square plate. The length along the x-

axis and z-axis is 100 meters, along y-axis is 1 meter. 
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Fig. 1. Geometry of first example case. 

 

Boundary conditions: on the surface xy, z=0: temperature T = 1 C; on other 5 surfaces: grad (T) 

= 10. These boundary conditions were chosen for ease of estimation error of the final result. In this 

case, the temperature decreases linearly from the heated surface. 

We want to find out temperature distribution. The heat transfer expressed by Laplace equation: 
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where for the mathematical treatment is sufficient to consider the case 1  . 

All dynamic mesh settings are described in OpenFOAM dynamicMeshDict. 
dynamicRefineFvMeshCoeffs 

{ 

    refineInterval 1;  // How often to refine 

    field  normalisedF; // Field to be refinement on 

    lowerRefineLevel 0.5; // Refine field inbetween lower..upper 

    upperRefineLevel 1.5; 

    unrefineLevel  0.1; // If value < unrefineLevel unrefine 

    nBufferLayers  2; // Have slower than 2:1 refinement 

    maxRefinement 2; // Refine cells only up to maxRefinement levels 

    maxCells  8000; // Stop refinement if maxCells reached 

} 

 

For comparison, residual plots for both AMR are given (see Fig. 2). As you can see from Fig. 2, 

in case with AMR F adaptation the residual converges little faster than that of the AMR T case. 

 
Fig. 2. First example, AMR F and AMR T residuals. 

In second example we show the work of the AMR F on a more complex geometry. Geometry 

and boundary conditions are showed on Fig. 3. 
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Fig. 3. Second example, geometry and boundary conditions. 

 

As shown in Fig. 3 one surface of flange has temperature 1 573T C   and second has 

temperature 2 273T C  . On all other surfaces the temperature gradient is set to 0, that walls do not 

conduct heat (adiabatic walls). 

During testing, we found that AMR based on scalar field F  detects too large cells, but does not 

take into account the boundary conditions (see Fig. 4). This occurs due to the fact that the boundary 

conditions are contained in right-hand column vector b  of Eq.1, but almost no effect on 

discretization matrix A . 

 

 
Fig. 4. AMR F detects and refines too large cells. 

 

AMR based on temperature gradient field T  vice versa takes into account the boundary 

conditions, but skips “bad” cells. 

 

 
Fig. 5. AMR T takes into account the boundary conditions. 

 

Therefore for comparison was made third “hybrid” variant, which include first five iterations of 

AMR F and after that it continues with AMR T. For comparison, residual plots of three cases are 

given (see Fig. 6). 
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Fig. 6. Comparison of AMR F, AMR T and AMR FT. 

 

As can be seen from the figure, AMR FT has the best residual, AMR F and AMR T slightly 

worse. 

Conclusion 

In the proposed method mesh refinement based on discretization matrix conditioning. As can be 

seen from above two examples – the method does not provide a significant performance increase 

compared to AMR, based on temperature gradient minimization, but use AMR T not always 

convenient or possible. Such situations are possible in complex problems with dynamic geometry, 

multiphase flows, etc. Our proposed method allows to choose more suitable AMR settings than in 

case of AMR T. 
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