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Abstract. This article looks into one of the methods of evaluation of competition results. It was 

assumed that participants run their distances within a probable time period with a known 

distribution. There were considered the Petri-Markov models of paired competition, plural and 

group competitions. The time densities and probabilities, with which the participants may win 

and/or lose the competition, are deduced. Also, the authors come out with the general expressions 

for the time densities and the probabilities of finishing the distance by an arbitrary number of 

participants and groups of participants. 

Introduction 

At present, games theory is widely used in industry, economy, military, computer science and other 

branches of knowledge as a powerful concept of system simulation. Originally, the game theory 

was developed based on static games with their payoff matrix and strategies of players, which result 

in winning or losing some resources. In computer science game theory is used for modelling the 

interaction inside networks, between a processor, computational modules, peripherals, and etc. [1] 

Temporal aspects of game evolution, especially the evolution of a game in physical time, are 

considered insufficiently. At the same time, a concurrent game in temporal domain is the main 

process of every concurrent system. In this article we made the assumption that: 

1. A certain quantity (number) of participants take part in a game; 

2. A game develops in real physical time; 

3. During a game, the participants “run” a certain “distance”; they start their distances at the same 

time, and winning or losing the game is understood as being the first or not the first to finish the 

distance; 

4. Until the losers finish their distances, the winners receive penalties from all the losers, and a 

value of the penalty is distributed on time; 

5. Time intervals, within which the participants run their distances, are random, and these 

intervals are calculated with accuracy to density of distribution. 

The importance of developing an approach for modeling, specification, verification and synthesis 

of discrete event processes, with particular emphasis on computer operating systems, database 

management, concurrent programs, and distributed computing, has been recognized in the computer 

science community for well over a decade, and a diverse and extensive literature has been 

developed on this subject [2].  

In this article the authors introduce the mathematical formalism that fully takes into account such 

features as a run-time accident and a possibility of simultaneous execution of groups of operators, 

as well as quasi-stochastic nature of the transitions in decision-making. This model is called Petri-

Markov nets [3], and it assumes the composition of structures of parallel algorithms, stochastic-time 

parameters and logical conditions. 

Competition of J Participants 

Common Petri net model of J participants competition is presented in fig 1, where places a1, ..., 

aj, ..., aJ simulate the process of distance running by the first, ..., j-th, ..., and J-th participant, 
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respectively, transition z1 simulates the start of the competition, and transition z2 simulates the 

finishing of a distance.  

 

a1 

z1 z2 

aj 

aJ 

... 

... 

 

Fig. 1: Concurrency of J participants 

Let us take J = 2 and split time intervals on periods dt. Then the result of the competition may be 

described with the semi-Markov process, which is shown in fig. 2.  

In the semi-Markov process: the state α simulates the start of the competition; the state αw1 

simulates the winning of the competition by the first participant; the state αw2 simulates the winning 

of the competition by the second participant; the state αw1 simulates the draw in the competition; 

states β-n, -∞ < -n < 0 simulate the situation, in which the first participant wins the competition with 

the result t = ndt; states βn, 0 < n < ∞, simulate the situation, in which the second participant wins 

the competition with the result t = ndt; and state β0 simulates a draw result, probability of which is 

less, than probabilities of any other results. 

Let us determine the time densities of achieving the absorbing states αw1, αw2, αd from the initial 

state α. The probability of the fact that within a period of time t = nΔt the state αw1 will be achieved 

with a time lag defined by the state β-n, is equal to        ttttn nfnFntP  121 , where 
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fact that within a period of time t =nΔt the state αw2 will be achieved with a time lag defined by the 
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Fig. 2: Semi-Markov process for Petri net in fig. 1, when J = 2 

So the sum of weighted densities (1) and (2) is equal to: 

          tFtF
dt

d
thth ww 2121 111  .  (3) 
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For a common case of concurrency of J participants the weighted sum of densities may be 

obtained from (3) with the mathematical induction method:  
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where     
t

jj dftF
0

 - are the distribution functions corresponding to the densities fj(t), 1  j  J. 

The probabilities of winning the competition by the j-th participant from (4) may be obtained as 

follows: 
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The time density of achievement of the transition z2 by the participant-winner j is defined as:  
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For example, let us look into the competition where J participants are united into K groups, with 

J(k) participants in the k-th group, so that   JkJ
K

k


1

.  

In accordance with the Petri model, the time density of the distance completion by the whole k-th 

group is defined as:  
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Waiting Time 

Let us consider the situation, in which the first participant finishes the distance at the moment  and 

is waiting until the second participant makes the finish. In this case we subtract the probable time of 

the first participant finishing the distance from the probable time of the second participant finishing 

the distance. The density of difference of the probable values is defined by the correlation integral, 

i.e.    



0

21 dtff . The weighted time density of waiting by the first participant until the second 

participant finishes the distance is derived by means the truncation of a part with the negative 

argument from the correlation integral: 
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The probability of winning by the first participant is defined by the expression, derived from (3): 
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The density of waiting time for the case when the first participant finishes his distance the first is 

the following 
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where (t) - is the Heaviside function. 

It is necessary to say that expression (10) is not the commutative one, and in the general case:  
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Evaluation of Competition Efficiency 

One of the most important factors of the competition simulation is the evaluation of its efficiency. 

The natural model of efficiency evaluation is a model, according to which the participant, who has 

finished the distance, receives the penalty from the losers until the losers finish the distance. In the 

proposed conception the competition proceeds within physical time, and there is an evaluation of 

the waiting time density, therefore it is natural to define the payoff matrix as follows: 

    tst jiS .    (12) 

where  ts ji  - is the “density of penalties”, the value of which, at time t, is equal to a part of the 

payoff received by the j-th winner to the i-th loser. 

In general,    tsts ijji  , therefore matrix (12) is asymmetrical with respect to the main diagonal. 

As the participant, who finished the distance, cannot penalize himself,   0ts jj .  

The First and the simplest principle consists in the fact that the l-th group, which lost the 

competition, pays a penalty to the winning k-th group. In this case the “density of penalties” is 

evaluated as follows: 
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The group k wins from the group l a total penalty of:  
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dttstfs kllkkl
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where  tf lk  is defined by expression (10);  tfk  and  tfl  in (10) are defined by expression (7). 

The second and more complex principle consists in the fact that every participant in the l-th group, 

which lost the competition, pays a penalty to the participants of the winning k-th group individually. 

In this case, the time of waiting by the k-th group for the completion of the distance by the 

participants from the l-th group is determined with the expression, derivable from (10): 
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The group k wins from the group l a total penalty of: 
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In the competition under examination there may be other principles of penalty payoff, for which 

other formulas of payoff evaluation are applied, but the general principles can be understood from 

the examples above. 
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Numerical Example 

As an example let us consider the case of paired competition, which is expressed by the Petri-

Markov net, in which J = 2 and time densities f1(t), and f2(t) are equal to (fig. 3 a): 
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Fig. 3: Time densities and time distributions 

It is obvious that f1(t), and f2(t) have the dimension of 








t ime

prob.
. The expectations of time densities 

are quite equal, i.e.  time121 TT . The distribution functions, corresponding to the time densities 

f1(t), and f2(t), and having the [prob.] dimension are as follows (fig. 3 b): 
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In spite of equality of expectations for f1(t) and f2(t), the probabilities of winning by the 

participants 1 and 2, calculated based on expression (5), are quite different:  .prob3834.01 wp ; 

 .prob6166.02 wp .  

The waiting time densities, calculated based on the expression (10), are equal (fig. 3 c): 
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If the density of penalties is equal to      ctNtsts  exp
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c  - is a speed of decrease of demand on the results of winning, then the sum of 

penalties, which the first participant gets from the second one with the probability of 0,6166, is 

equal to: 
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The penalty, which the second participant gets from the first one with the probability of 0,3834, 

is equal to: 
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In spite of equality of expectation of f1(t) and f2(t), the equality of penalty density sums, which a 

participant can potentially win from the partners, and the probabilities of winning are quite different, 

and these obstacles should be taken into account when planning the concurrent games. 

Conclusions 

We have presented a competition as a result of “running” by its participants of some distance during 

a probable time, which is defined with accuracy to distribution. It was shown that the mathematical 

apparatus of the Petri-Markov net is an efficient instrument for the simulation of such cases, which 

permits to describe all cases of a competition, from the paired to the group ones. Also, it permits to 

evaluate the efficiency of participation in a competition with this of that distribution of running the 

distance.  

The time and stochastic characteristics were obtained in a general form. They are essential for 

planning the strategy and tactics of a competition, if a strategy/tactic may change time densities of 

running the distance by the participants. The following researches in this domain may be directed at 

working out the apparatus, which links the proposed method of simulation of a competition with the 

traditional game theory. Also, the method may be useful for solving the task of game optimization, 

which permits to generate the aim function or the restrictions for this task. The development of this 

method may be directed at working out a simple engineering method of efficiency calculation with 

the use of only numerical characteristics of time distributions. 
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