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Abstract. This paper addresses the problem of Fuzzy Proportional-Integral-Derivative control 

tuning based on a differential evolution technique. Two different constrained optimisation 

approaches are considered. One where solely the controller scaling factors are adjusted, and another 

for which both the scaling factors and membership functions width are optimised. The cost function 

is expressed in terms of the system closed loop performance, with the plant dynamics described by 

a nonlinear model. The formulation includes a set of constraints, namely bounds on scaling factors, 

control actions and on the system outputs. For the second approach additional constraints for the 

membership functions width are also considered. Experimental results carried out on a Multi-Input 

Multi-Output benchmark system favour the optimisation of both gains and membership functions 

width. 

Introduction 

Proportional-Integral-Derivative (PID) control is still in these days widely used in industry. The 

main motivation for using this type of controllers is to some extend due to its functional/structural 

simplicity, easy tuning and low cost implementation. When the system dynamics exhibits higher 

nonlinearities or in the case of time varying dependencies, such technique invariably leads to under 

performance or even instability. A very intuitive nonlinear technique takes advantage of fuzzy logic 

theory for designing control structures [1], in particular those represented by Mamdani type 

architectures. 

In the present study the differential evolution (DE) method is considered for tuning both the 

scaling factors and member ship functions width. Although other versions based on the scaling 

factors optimisation have been proposed and evaluated (see e.g. [2]), the incorporation of adaptation 

mechanisms regarding the membership functions width is somehow a novelty to the best of the 

authors knowledge. Hence, this work aims at comparing the outcomes in terms of closed loop 

performance in two different architectures. The first considers the scaling factors tuning, with the 

membership functions width unchanged, while in the second approach both the scaling factors and 

the membership functions width are also optimised. In both approaches, the optimisation is carried 

out offline, and includes constraints on the controller scaling factors, control actions, increment of 

control actions and outputs. The plant dynamics is approximated by a Nonlinear Autoregressive 

with Exogenous Inputs (NARX) neuronal network. Additionally, in the second scheme to 

optimisation problem also includes a set of constraints for the membership functions. 

Fuzzy Logic Control Systems 

The basic structure of a FLC system consists of four conceptual components: the knowledge 

base, fuzzification interface, inference engine, and finally the defuzzification interface. The 

knowledge base module contains all the required controller's knowledge/information, namely the 

rule base and a data base. The inference engine is a reasoning mechanism that performs inference 

operations upon the fuzzy control rules, and given operating conditions, in order to provide control 
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actions as outputs. The fuzzification component defines a mapping from a real-valued (crisp) 

subspace to a fuzzy one, while the defuzzification module implements a mapping from a fuzzy 

subspace, defined over an output universe of discourse to a real-valued subspace (crisp) [1]. 

 

 
Fig.1: Fuzzy-PID controller schematics. 

 

PID-Fuzzy Controller Architecture. The fuzzy-PID control topology considered in this work 

consist of two-input single-output PID-fuzzy controller structure, as shown in Fig. 1, where   , 

   ,     and     are the controller scaling factors. This architecture assumes as input variables 

the error   (1) and the change in error    (2), and delivers as output the control action     , 
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with   the current discrete time,   the system output and   the reference signal. The normalised 

error  ̃, change in error Δ ̃, as well as the denormalised control action     and the increment of 

control action    are given by: 
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where   ̃  ( ) is the normalised increment of control action associated with the fuzzy PI block 

and  ̃  ( ) is the normalised fuzzy PD contribution. 

Finally, it should be mentioned that different fuzzy Mamdani-type controller architectures can be 

considered, having no impact on the proposed general tuning methodology. 

Differential Evolution Based Tuning. The DE is a powerful evolutionary algorithm for global 

optimization in real problems. This technique is a parallel direct search method, which uses     -

dimensional parameter vectors                   as a population, for each generation   [3], 

with    the number of parents, which are kept unchanged over the minimisation process. The 

initial vector population is chosen randomly and should cover the whole parameter space. In the 

optimisation process the DE generates new parameter vectors by adding the weighted difference 

between two population vectors to a third vector. If the trial vector has a lower cost function value 

than that of the target vector, the trial vector will replace the target vector in the next generation, 

being this operation denoted as selection. Additionally, each population vector has to serve once as 

the target vector so that NP  competitions take place in one generation. Fig. 2 shows the modus 

operandi of the DE technique. The reader is referred to [4] and references there in for a thoroughly 

introduction to this method. 

Gains Optimization. In both approaches the scaling factors of the fuzzy- PID controller are 

obtained by solving a constrained nonlinear optimization problem, in which the cost function to be 

minimised is defined by a metric expressed in terms of closed loop system's performance, namely: 
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where        is the performance index,       
  is the prediction horizon,        is the output 

vector,        is the control action vector,        the vector of scaling factors,  ( ) is the 

nonlinear system dynamics,  ( ) and  ( ) are nonlinear functions associated with the equality 

and inequality constraints. 

Given an initial vector population of scaling factors, the iterative constrained optimization 

algorithm iteratively calculates a new and improved set of scaling factors, until a minimum of the 

chosen criterion is reached, within a prespecified time limit or a maximum number of iterations. 

 

 
 

Fig.2: Basic Configuration of Differential Evolution. 

 

Membership Functions Optimization. The approach followed for the membership functions 

tuning is somehow similar to the one described in Sec. 2-2.2.1, but with two main differences. The 

first refers to the initialisation of the vector population, which includes the initial values for the 

width of membership functions, while the second one is related to the fact that at the end of each 

iteration, both the fuzzy PI and PD components have to be updated. Moreover, constraints on 

membership functions are also included in underlying optimisation problem. According to Kosko 

[5], the degree of overlapping between membership functions should lie within the interval [0.25, 

0.50], while the overlapping rate between membership functions should be exactly 1, which implies 

their symmetry. Choosing these values for the degree of overlapping and overlapping rate will 

contribute to some extent to reduce both the overshoot and the settling time of the closed loop step 

response. 

Cases Studies 

Fuzzy-PID Controller Design. The fuzzy-PID controller comprises two inputs, namely, the control 

error  ̃ and the change in error   ̃, and one output      (see Fig. 1), which is is given by, 
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The normalized universe of discourse for  ̃ and   ̃ are chosen as [-1.5, +1.5] and partitioned 

into seven fuzzy sets (Fig. 3). In the case of the corresponding outputs from the fuzzy PI and PD 

modules, it was decided that the underlying universe of discourse should also be defined in the 

range [-1.5, +1.5], while assuming a partition similar to those defined for  ̃,   ̃ and  ̃. The 

membership functions associated with the output   ̃, are represented in (Fig. 4).  

 

        
 

  

 

Experiments. The AMIRA
®

 DTS 200 benchmark three-tank system consists of three plexiglas 

cylindrical tanks, with identical cross-section, which are supplied with distilled water. The liquid 

levels   ,    and    are measured by piezoresistive transducers in the range of [-10, +10] V. The 

middle tank (  ) is connected to the other two tanks through a circular cross-section pipes 

provided with manually adjustable ball valves, being the main outlet of the system located at tank 

  .  

The cost function was chosen as a quadratic performance index, including penalized control 

errors and control actions increments. The constrained optimization problem can be written as 

follows: 
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With respect to the scaling factors vector,  , and membership functions width,  , they are 

represented in equation (10) by, 

  
 [                                   ] 

(11) 

   [                           ] (12) 

They should comply with the following constraints: 

   ( )                  ( )     
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      (     )             (     )           
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      (     )             (     )           

  (     )      

The three-tank system is described by a Nonlinear AutoRegressive with eXogenous input 

(NARX) multilayer neural network consisting of three layers, namely an input layer, a hidden layer 

and an output layer. Equation (14) represents generically the neural network predictor used in this 

work. 

     ( )        [      ( )]
   

(14) 

In what the membership functions tuning is concerned, in the first approach, where merely the 

scaling factors are optimised, they are manually selected as shown in Fig. 3 and Fig. 4, while for the 

Fig.3: Membership Functions 

 for  ̃,   ̃ and  ̃. 

Fig.4: Membership Functions 

for   ̃. 
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second approach, both scaling factors and membership functions, are adjusted by means of a DE 

algorithm so as to minimise the selected performance index. In order to keep the robustness of this 

approach, in terms of computational time, the membership functions of both the fuzzy PI and PD 

components are compelled to be the same, except the membership function ZE of   ̃  , which is 

fixed with a very narrow width. In Fig. 5 and Fig. 6 are presented the outcomes of the optimisation 

procedure. 

 
 

 

The results concerning the two methodologies are presented in Fig. 7 and Fig. 8. From visual 

inspection, one can infer that the underlying closed loop responses are not that much different in 

terms of outputs. However, focussing the analysis in terms of control action it is clear the out-

performance for the optimisation of both scaling factors and membership functions. 

The tuning parameters obtained for both approaches are shown in Tables 1 and 2. The widths 

shown in Table 2 are the same as for both the fuzzy PD and the PI, with the exception of the 

membership function ZE of   ̃  , which is set as 0.06, and it is not adjusted in the optimisation 

process. 

 

Table 1: Optimal scaling factors. 

 Tank 1 Tank 2 

Appro

ach eK  eK  uK  uK  eK  eK  uK  uK  

K 0.17

9 

1.51

5 

2.04

8 
8.0 

0.83

2 

6.01

4 

0.59

1 

8.0 

K and 

L  

0.38

7 

2.70

9 

0.73

1 

6.41

9 

0.73

7 

4.97

0 

0.10

2 
7.355 

 

Table 2:  Membership functions width. 

Approach NB NM NS ZE PS PM PB 

K 0.80 0.60 0.60 0.60 0.60 0.60 0.80 

K and L 0.53

5 

0.53

5 
0.60 0.40 0.60 

0.53

5 

0.56

7 

 

In order to allow a quantitative assessment of these two approaches in competition, two metrics 

were used, namely the root mean squared of error (RMSE) and the root mean squared of control 

action increment (RMSI). The corresponding outcomes are shown in Table 3. 

As can be observed from Table 3, the underlying RMSE and RSMI favour the approach in which 

both scaling factors and membership functions are optimised. This is in line with the analysis based 

on Fig. 7 and Fig. 8. 

 

Table 3:  Performance metrics. 

Approach RMSE RMSI 

Scaling Factors Tuning 0.0572 0.0112 

Scaling Factors and Membership Functions Tuning 0.0556 0.0104 

Conclusions 

Fig.5: Membership Functions 

 for  ̃,   ̃ and  ̃. 

Fig.6: Membership Functions  

for    ̃. 
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This paper addressed the problem of tuning fuzzy PID controllers using a global constrained 

nonlinear optimisation approach based on a Differential Evolution technique. Two methodologies 

have been compared: one where only the scaling factors are optimised, while in the other scheme 

both the scaling factors and membership functions width are optimised. The performance index 

considered in this study was defined in terms of closed loop performance, and the plant dynamics 

approximated by a three-layered neural network. Results obtained from two experiments carried out 

on a benchmark three-tank system show the out-performance of the methodology relying on the 

optimisation of both scaling factors and membership functions. 
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Fig.7: Fuzzy-PID controller with 

scaling factors optimization. 

a) Tank 1. b) Tank 2. 

 

Fig.8: Fuzzy-PID controller with  

scaling factors and membership functions 

optimization. a) Tank 1. b) Tank 2. 
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