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Abstract. The 0/1 knapsack problem has been studied extensively due to its practical importance in 

many and diverse domains such as economics, engineering and management.  This paper examines 

the 0/1 Multiobjective Knapsack problem (MOKP) with the assistance of two state-of-the-art 

Multiobjective Evolutionary Algorithms (MOEAs) based on decomposition, namely the MOEA/D 

and the MOEA/D-DRA.  The compared multiobjective algorithms are analyzed and tested on four 

test instances of the MOKP with the assistance of two performance metrics. Experimental results 

show that the two algorithms generate comparable results for the four benchmark multiobjective 

knapsack problems examined in this study. 

Introduction 

The 0/1 knapsack problem has been studied extensively due to its practical significance.   Indeed 

many real world applications [1]-[3] from the field of finance, engineering, logistics, resource 

allocation and production scheduling stem from the principles of the knapsack problem. Briefly, the 

0/1 knapsack problem involves selecting the most profitable items among the available pool of 

items, given the limited capacity of the knapsack. Analytically the classical 0/1 knapsack problem 

can be formulated as follows [4].   

Consider a set of n items represented with the assistance of a vector,   (             ), with      

if item j is included in the knapsack and      otherwise. Each item has a profit  
 
 and a weight   . 

The problem is to select a subset of the available items such that the total profit is maximized and 

the capacity   of the knapsack is not exceeded. Formally the problem can be written as: 

   ∑  
 

 

   

   

          ∑  

 

   

     

   *   +   *     +    

 

Many algorithms have been proposed over the last decade for both single and multiobjective 

knapsack problems. In this paper, we examine the 0/1 Multiobjective Knapsack problem (MOKP) 

with the assistance of two state-of-the-art Multiobjective Evolutionary Algorithms (MOEAs) based 

on decomposition, namely the Multiobjective Evolutionary Algorithm based on Decomposition 

(MOEA/D) [5] and the MOEA/D with Dynamical Resource Allocation (MOEA/D-DRA) [6].  The 

majority of the MOEAs are Pareto dominance based, meaning that the fitness of each individual at 

each generation is determined by its Pareto dominance relations with other solutions in the 

population.  However, the MOEA/D and the MOEA/D-DRA make use of an aggregating function 

that combines the two or more objectives into a single scalar value, and in which the weights are 

varied in order to generate different nondominated solutions. The weights are called trade-off 
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technique can be decomposed into a number of single objective optimization problems. The 

MOEA/D and the MOEA/D-DRA are using the decomposition principle as described above. 

The remainder of the paper is organized as follows. In section 2, a description of the 

multiobjective 0/1 knapsack problem (MOKP) is given. In section 3 the MOEA/D and the 

MOEA/D-DRA are presented. The performance metrics are discussed in section 4. In section 5 are 

presented the experimental results for the two algorithms with the assistance of four multiobjective 

0/1 knapsack problems of Zitzler & Thiele [4]. Finally, section 6 analyses the results and concludes 

the paper. 

Problem formulation 

The multiobjective 0/1 knapsack problem (MOKP) can be formulated as follows: 

 

     ( )  ∑  
  

 

   

            

          ∑   

 

   

               

     (       )
  *   +    

where  
  
   is the profit of item j in knapsack i,       is the weight of item j in knapsack i and c 

is the maximum capacity of knapsack i. Finally,      if the j
th

 item from the list of items is 

included in the knapsack. 

There are two distinct approaches for handling violations related to the capacity constrain. The 

first approach uses a heuristic mechanism to correct any violations and the second approach 

penalizes solutions which violate the constraint. We opted for the second approach. In particular 

infeasible solutions are allowed in order to increase the diversity in the population pool; however 

the infeasible individuals are penalized to have less chance to be reproduced. 

The penalty function takes into account the magnitude of the overall capacity constraint violation 

by the individual. Thus, the penalty function is expressed by the following relationship: 
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       )  
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Please notice that penalty functions are applied only to knapsacks which are over the maximum 

allowed capacity. 

Analysis of Algorithms: MOEA/D and MOEA/D-DRA 

MOEA/D. The MOEA/D uses a decomposition mechanism for converting the problem of 

approximation of the PF into a number of scalar optimization problems. Formally, a m-objective 

minimization problem can be described as:  

 

     ( ) (  ( )     ( )       ( ))            (1) 
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where   ( ) is a m-dimentional objective vector,   ( ) is the i-th objective to be minimized and x is a 

decision vector. The multiobjective problem in Eq. 1 is decomposed into a number of single-

objective problems defined by a scalarizing function with different weight vectors. We consider the 

weighted sum and the weighted Tchebycheff as used in [5]. 

The weighted sum is written using the weight vector    (             )     as 

 

   (  |      
 
  ( )      ( )         ( ).    (2) 

The weighted sum is to be minimized in its application to the multiobjective minimization 

problem.  

The weighted Tchebycheff decomposition in [5] is written using the weight vector   and a 

reference point    (  
      

        
 )  i.e.     

     *  ( ) |      for each i = 1,..,m as the scalar 

optimization problems of the form: 

 

   (  |                          
    ( ) -   

 
  , subject to    .      (3) 

Under certain mild conditions, in each Pareto optimal point   , there exists a weight vector, λ 

such that   is the optimal solution of Eq.3, where each optimal solution of Eq.3 is a Pareto optimal 

solution of the objective function i.e. min           ( )       ( ) 
 
. Thus, by solving a set of single 

objective optimization problems defined by the Tchebycheff with different weight vectors allows 

the user to obtain different Pareto optimal solutions.   

MOEA/D-DRA 

In MOEA/D as introduced by [5], all the sub problems are treated equally and receive about the 

same amount of computational effort. However, a more recent study [6] assigns different levels of 

computational effort in each sub problem based on the different level of difficulty in obtaining the 

solution. In particular, the new version of MOEA/D with a dynamical resource allocation 

(MOEA/D-DRA) computes a utility parameter π
i
 for each of the sub problems i, allowing 

computational effort to be distributed based on their utilities.   

Below we provide a flowchart of the MOEA/D-DRA algorithm: 

 

 
Fig.1. Pseudo code of MOEA/D-DRA 
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Performance Metrics 

Hypervolume. Hypervolume,  also known as S metric, is an indicator of both the convergence and 

diversity of an approximation set. Thus, given a set S containing m points in n objectives, the 

hypervolume of S is the size of the portion of objective space that is dominated by at least one point 

in S. The hypervolume of S is calculated relative to a reference point which is worse than (or equal 

to) every point in S in every objective.  The greater the hypervolume of a solution the better 

considered the solution. 

Spread. The spread of solutions (Δ) examines whether or not the solutions span the entire Pareto 

optimal region [7]. Moreover, it calculates the Euclidean distance between the consecutive solutions 

in the obtained non-dominated set of solutions. Then it calculates the average of these distances. 

After that, from the obtained set of non-dominated solutions the extreme solutions are calculated. 

Finally, using the following metric it calculates the nonuniformity in the distribution. 
 

Δ 
         ∑        ̅ 

   
   

                  ̅
 

The Test Problems 

The use four multiobjective 0/1 knapsack problems proposed by the Zitzler & Thiele [4].Each 

problem has two objectives and 100, 250, 500 and 750 items. We refer to each problem as a k-n 

problem where k is the number of knapsacks (i.e. objectives) and n is the number of items. Thus, the 

four knapsack problems are denoted as 2-100, 2-250, 2-500 and 2-750 respectively.   

 

Table 1: Mean, Std, Median and Iqr for Hv and Spread 

    

Problem  MOEA/D MOEA/D-

DRA 

Knapsack 

2-100 

HV. Mean 

and Std 

5.93e-

013.5e-02 

6.17e-

014.1e-02 

HV. 

Median 

and IQR 

5.99e-

015.6e-02 

6.29e-

015.4e-02 

SPREAD. 

Mean and 

Std 

6.47e-

015.3e-02 

6.22e-

015.6e-02 

SPREAD. 

Median 

and IQR 

6.43e-

013.8e-02 

6.31e-

019.0e-02 

 

 

    

Problem  MOEA/D MOEA/D-

DRA 

Knapsack 

2-250 

HV. Mean 

and Std 

5.85e-

012.7e-02 

5.73e-

013.1e-02 

HV. 

Median 

and IQR 

5.86e-

014.8e-02 

5.78e-

013.4e-02 

SPREAD. 

Mean and 

Std 

4.35e-

014.9e-02 

4.54e-

016.2e-02 

SPREAD. 4.35e- 4.40e-
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Median 

and IQR 

014.8e-02 017.7e-02 

 
 

Problem  MOEA/D MOEA/D-

DRA 

Knapsack 

2-500 

HV. Mean 

and Std 

5.54e-

011.9e-02 

5.54e-

012.2e-02 

HV. 

Median 

and IQR 

5.51e-

012.8e-02 

5.56e-

013.5e-02 

SPREAD. 

Mean and 

Std 

3.49e-

013.2e-02 

3.80e-

016.0e-02 

SPREAD. 

Median 

and IQR 

3.40e-

015.3e-02 

3.59e-

016.3e-02 

 

 

    

Problem  MOEA/D MOEA/D-

DRA 

Knapsack 

2-750 

HV. Mean 

and Std 

5.52e-

014.3e-02 

5.35e-

011.7e-02 

HV. 

Median 

and IQR 

5.32e-

018.6e-02 

5.38e-

013.8e-02 

SPREAD. 

Mean and 

Std 

7.42e-

011.2e-01 

7.75e-

019.6e-02 

SPREAD. 

Median 

and IQR 

7.73e-

012.0e-01 

7.79e-

011.8e-01 

 

Table 2: Boxplots for Hv and Spread 
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Problem: Knapsack 2-250 
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Problem: Knapsack 2-500 

 

 

Problem: Knapsack 2-750 
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Table 1 presents the results of four bi-objective 0/1 knapsack problems proposed by the Zitzler & 

Thiele. It presents the mean, standard deviation (STD), median and interquartile range (IQR) of all 

the independent runs carried out for Hypervolume (HV) and Spread (Δ) indicator respectively.  

The higher the value of HV indicator the better the computed front. The second indicator the 

Spread (Δ) [7] examines the spread of solutions across the pareto front. The smaller the value of this 

indicator, the better the distribution of the solutions. This indicator takes a zero value for an ideal 

distribution of the solutions in the Pareto front.  

Table 2 uses boxplots to present graphically, the performance of MOEA/D and MOEA/D-DRA 

respectively, for the two performance indicators, namely: HV and Spread.  

Analysis of the Results – Conclusions 

We applied the MOEA/D and the MOEA/D-DRA, to four multiobjective 0/1 knapsack problems 

proposed by the Zitzler & Thiele [4] using the following parameter specifications: 
 Coding: binary encoding, 
 Population size: N = 100, 
 Termination condition: The algorithm stops after 25,000 function evaluations for each test 

instance. 
 T : the number of the weight vectors in the neighbourhood of each weight vector. T = 0.1N  
  Number of runs for each test problem: 100 runs. 

   
Numerical experiments have been performed using several well-known multiobjective instances 

of the knapsack problems provided by Zitzler & Thiele [4]. A number of experimental comparisons 

with MOEA/D and MOEA/D-DRA have also been given. Experimental results show that the two 

algorithms generate comparable results for the four benchmark multiobjective knapsack problems 

examined in this study. 

In particular, examining the results (Table 1 and 2) of the first indicator, the Hypervolume, we 

observe that the MOEA/D-DRA performs better than the MOEA/D for the 2-100 test instance  Also, 

when examining the results regarding the Spread metric the MOEA/D-DRA performs better than 

the MOEA/ for the 2-100 test instance. The two algorithms generate comparable results for the 2-

250, 2-500 and 2-700 test instances. To conclude, from the analysis of the experimental results of 

this study we reach the conclusion that the MOEA/D and the MOEA/D with dynamical resource 

allocation (DRA) generate comparable results in terms of Hypervolume and Spread of solutions.  

Future work will concentrate on testing the various approaches on a wider range of knapsack 

problems, with more objectives and more restricted capacities [8], [9], [10]. We also intend to 

experiment with different types of representations and operators. Finally, we plan to apply the 

knapsack problem methodology for solving a number of real world problems such as loading 

shipping containers given the maximum allowable weight or volume. Another practical problem 

would be the optimal storage of products in a distribution center given the limited space.   

 

6



 

Acknowledgement 

The publication of this paper has been partly supported by the University of Piraeus Research 

Center. 

References 

[1] Liagkouras, K. and Metaxiotis, K.: A new Probe Guided Mutation operator and its application 

for solving the cardinality constrained portfolio optimization problem, Expert Systems with 

Applications 41 (2014) 6274–6290. 

[2] Metaxiotis, K and Liagkouras, K.: Multiobjective evolutionary algorithms for portfolio 

management: a comprehensive literature review, Expert Systems with Applications 39 (14), 

(2012) 11685-11698.  

[3] Liagkouras, K. and Metaxiotis, K.: An Elitist Polynomial Mutation Operator for Improved 

Performance of MOEAs in Computer Networks, Computer Communications and Networks 

(ICCCN), 2013 22nd International Conference on, pages 1-5, (2013) IEEE. 

[4] Zitzler, E. and Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study 

and the Strength Pareto Approach, IEEE Transactions on Evolutionary Computation 3 (1999) 

257-271. 

[5] Zhang, Q. and Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on 

Decomposition. IEEE Trans. on Evolutionary Computation 11 (2007) 712-731. 

[6]  Zhang, Q., Liu, W. and Li, H.: The Performance of a New Version of MOEA/D on CEC09 

Unconstrained MOP Test Instances." IEEE Congress on Evolutionary Computation,Trondheim, 

Norway, (2009). 

[7] Kumar, R. and Singh, P.: Assessing solution quality of biobjective 0-1 knapsack problem using 

evolutionary and heuristic algorithms, Applied Soft Computing, Vol. 10, No. 3, 711-718, 2010. 

[8] Wang, H., Kochenberger, G. and Glover, F.: A computational study on the quadratic knapsack 

problem with multiple constraints, Computers & Operations Research, Vol. 39, No. 1, 3-11, 

2012. 

[9] Zhang, J.: Comparative study of several intelligent algorithms for knapsack problem, Procedia 

Environmental Sciences, Vol. 11, Part A, 163-168, 2011. 

[10] Kafafy A., Bounekkar A., Bonnevay S.: A hybrid evolutionary metaheuristics (HEMH) applied 

on 0/1 multiobjective knapsack problems. GECCO-2011: 497-504. 

7




