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Abstract. The paper presents a missing data imputation method based on compressed Sensing (CS). First 
of all, the problem of data imputation is translated into the recovery of sparse vector under the framework of 
compressed sensing. Secondly, we propose an improved greedy reconstruction algorithm called Double Try 
Sparsity Adaptive Matching Pursuit (DTSAMP). The algorithm obtains the estimation of sparsity by trying 
twice to approximate the value of sparsity, and then approximates the estimated value in each iteration. As a 
result, the missing data sets can be reconstructed without prior information of the sparsity. Furthermore, the 
step size and support set are well controlled by setting thresholds during the iteration. The simulation results 
show that the proposed algorithm is superior to other methods in terms of reconstruction speed and accuracy, 
as well as better robustness. 
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1. Introduction  
With the development of science and technology, the collection and use of data has become the 

cornerstone of modern society. Especially in recent years, due to the widespread use of sensors, a new digital 
society has been created on the basis of massive data, and the importance of data has become increasingly 
prominent. In the process of data transmission, data loss is very common due to various reasons, such as 
hardware failure, channel fading, channel conflict and line blocking [1]. 

The preprocessing of data sets with missing data is an important task before data mining. If missing 
values in data sets cannot be imputed accurately, many existing data mining methods will be useless. When 
there are few missing values in the data set, direct deletion is always used to complete the processing work. 
However, deletion will result in the loss of information if the number of missing values is quite large. 
Imputing the missing values is another way to reconstruct the data sets with missing data, statistical methods 
or machine learning methods are usually used to complete the work in practice [2]. 

At present, there have been a large number of methods to complete the estimation of missing values, 
different imputation methods have their own advantages and disadvantages. Linear interpolation is one of the 
simplest data imputation methods, but it does not work well when dealing with continuous data loss [3]. The 
K-nearest Neighbor method (KNN) does not need to predict the quantitative or qualitative properties of the 
missing values in advance. This method can directly process multiple missing values, however, it performs 
poorly when running on large data sets [4]. Rough set theory is an effective way to deal with the problem of 
uncertainty, on the other hand, it cannot complete parameter optimization and missing data classification, 
which results in low precision of data completion [5]. Random forest (RF) can process high-dimensional data 
with high accuracy, while it has a large computational cost when processing a large amount of data [6]. 
Support vector machine (SVM) is insensitive to outliers and has high robustness, but this algorithm is of high 
computational complexity [7]. Neural network has excellent performance, nevertheless, it requires a huge 
training data set and is prone to over-fitting [8]. The tensor factorization method has advantages in high-
dimensional data imputing, and makes full use of the implicit information between data of different 
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dimensions, yet it also has problems in calculation [9, 10]. These data imputation methods are effective in 
their suitable cases, but not for data sets with a large amount of missing data. 

Compressed sensing is a novel sampling theory, which can reconstruct the original signal on the basis of 
a small number of samples [11]. According to Nyquist sampling theorem, in order to retain the information 
in the original signal completely, the sampling frequency must be greater than 2 times of the highest 
frequency. The compressed sensing method breaks through the limitation of sampling principle, and can 
complete signal sampling with much less than 2 times of the maximum frequency, which greatly reduces the 
number of sampling. According to the sparse characteristics of the signal, the original signal can be 
recovered by solving a nonlinear optimization problem, and only a small number of data values are needed. 
The sparseness of the signal is an important foundation of the compressed sensing theory. In a sparse signal, 
a large number of signals have not been collected, which is very similar to the situation where the data set 
contains a large number of missing data. Therefore, we can also treat the missing data set as a sparse vector 
and reconstruct the data set with a small amount of data. To sum up, the compressed sensing theory can be 
used to solve the interpolation problem of data sets with large amounts of missing data. 

The design of reconstruction algorithm is one of the keys to data reconstruction in compressed sensing 
system, which determines the efficiency to a large extent. The existing reconstruction algorithms mainly 
include convex-optimization algorithms, greedy algorithms, Bayesian algorithms, noniterative reconstruction 
algorithms and machine learning algorithms [12]. Greedy algorithms are widely used because of their low 
reconstruction complexity. When the sparsity is known, greedy algorithms such as matching pursuit (MP) 
[13], orthogonal matching pursuit (OMP) [14], regularized orthogonal matching pursuit (ROMP) [15], 
stagewise orthogonal matching pursuit (StOMP) [16], compressive sampling matching pursuit (CoSaMP) 
[16] and subspace pursuit (SP) [17] could accurately reconstruct the results. But this piece of information 
may not be available in practical applications, the sparsity adaptive matching pursuit (SAMP) [18] is 
proposed to recover the signal when the sparsity is unknown. This algorithm needs a trade-off between 
iterative speed and exact recovery, but it is difficult to keep a balance between them. 

In order to solve this problem, a large number of algorithms have been proposed. Iterative regularization 
sparsity adaptive matching pursuit (IR-SAMP) algorithm [19] use regularization to achieve retrospective 
screening, so that the inappropriate atoms can be removed. Filtering-based regularized sparsity variable step-
size matching pursuit (FRSVssMP) algorithm [20] propose two stages of variant step sizes to approximate 
the true sparsity. Bidirectional sparsity adaptive adjustment and weak selection of atoms (BSA-WSAMP) 
algorithm [21] utilize the estimated value of the energy difference between the adjacent two iterations to 
decide the variable step size. Sparsity adaptive greedy iterative (SAGI) algorithm [22] introduce a new 
sparsity pre-estimation strategy, whereby the estimated sparsity can be easily obtained. However, the 
insufficient compatibility between accuracy and efficiency of these algorithms still need to be improved. 

According to the above analysis, this paper proposed a missing data imputation method based on 
compressed sensing, which transformed the problem of missing data imputation into a sparse signal recovery 
problem. Furthermore, a reconstruction algorithm was proposed, which improved the operation efficiency by 
means of sparsity estimation and variable step size. What’s more, it also improved the reconstruction 
accuracy by the control of support set and the introduction of backtracking. The simulation results indicated 
that the algorithm proposed can well reconstruct the data set even when the sparse conversion effect is very 
poor. It also had better robustness and greater advantages in reconstruction accuracy and running speed. 

2. CS Theory Framework 
Suppose that x  is a sampled length-N signal, y  is an M -dimensional vector that consists of linear 

projections of the vector x , If the number of nonzeros in x  is much smaller than N , it is called K -sparse. 
This encoding system can be described as follows: 

 y ,x=Φ                                                                                   (1) 

where Φ represents an M N×  sampling matrix.  
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In this theory, we assume that x is considered to be K -parse, whereas signals may not always be sparse 

in practical applications. To solve the problem, we can transform the signal to another set of bases so that the 
signal is sparse on this set of bases, which is called the sparse representation of the signal: 

,x θ=Ψ                                                                                   (2) 

where Ψ  is an N N× transform basis, and θ  is an N-dimensional signal with no more than K nonzero 
coefficients. 

In general, if the values except the K nonzero coefficients are small, we can also consider this vector to 
be K-sparse, then: 

y ,x θ θ= = =Φ ΦΨ A                                                                     (3) 

where A =ΦΨ   is an M N×  sampling matrix. 
After receiving the signal, the receiver needs to complete the signal reconstruction. According to 

elementary linear algebra, x  cannot be uniquely recovered from y  by linear algebraic means. To solve the 
problem, sparsity is supposed to be a powerful constraint. Assuming that x  is K -sparse, it can be well 
reconstructed if Φ satisfies the Restricted Isometry Property (RIP) as follows: 

( ) ( )2 2

2 2 2
1 1 ,K Kx x xδ δ− ≤ ≤ +Φ                                                       (4) 

where kδ  is the RIP constant。 

3. Double Try Sparsity Adaptive Matching Pursuit 

3.1. Pre-estimation of Sparsity 
A sparsity underestimation method has been proposed in literature [22]. The idea is to obtain a support 

set cΓ  through the matching test, which is slightly smaller than the real support set Γ , and  the obtained 
sparsity estimate cK  will be slightly smaller than the  true sparsity K .  

Assume the sensing matrix Φ  satisfies the RIP property with parameter ( ), kK δ  and cK K≥ . Since Kδ  

is monotonic, we have ( )2 2 22
1 / 1

c

T
K Ky yδ δΓ ≥ − + ⋅Φ . The theorem is sufficient and unnecessary, and its 

negation proposition is usually used to determine the size of the sparsity estimation value, that is, if there 
is ( )2 2 22

1 / 1
c

T
K Ky yδ δΓ < − + ⋅Φ , then cK K< . 

The premise of the theorem is that the support set obtained by the matching test is accurate. However, if 
the wrong column is selected in the support set, the sparsity estimate will be inaccurate. Reference [22] select 
the support set by calculate the inner products of the residual with the columns of Φ . Experiments show that 
the estimated values obtained by using this method have significant instability. 

In this paper, the backtracking idea in the SP algorithm is introduced to improve the selection method of 
the support set, which improves the accuracy of the pre-estimation and reduces the probability of introducing 
wrong candidates in the pre-estimation process. First, calculate the inner product of the residual and each 
column of the sampling matrix, select the candidates corresponding to the first k  maximum values, and 
establish a preselected set as 1( , )T

k kS Max r k−= Φ . In each iteration, the support set 1kF − obtained from the 

previous iteration is combined with the preselected set kS of this iteration to obtain a candidate 
set 1k k kC F S−=  . Finally, the candidate set is tested, and the candidates corresponding to the first 
k maximum absolute value was selected as the new support set of this round, which is chosen with the least 
square method as †( , )

kk CF Max y k= Φ , and the residual of the round was calculated as †
k F Fr y y= −Φ Φ .  

In order to improve test efficiency, exponential iteration is used to test sparsity. The sparsity estimation 
function is defined as = 1,2,mk a b m =（ ）  , and the value of m  gradually increases. When 

( )2 2 22
1 / 1T

k K Ky yδ δ< − + ⋅Φ is encountered, it means that k  has not reached the critical value, and the 
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next attempt is started. The iteration is stopped until it meets ( )2 2 22
1 / 1T

k K Ky yδ δ> − + ⋅Φ , and the value 
of k  obtained in the last iteration is taken as the sparsity estimation value. 

3.2. Re-estimation of Sparsity 
Reference [23] gives a criterion for sparse overestimation. If there is ( )2 2 22

1 / 1T
k K Ky yδ δ> + − ⋅Φ , 

then k K> .  
We improves the selection method of support set in its sparsity estimation, the backtracking idea in SP 

algorithm is also introduced to reduce the probability of wrong matching and improve the accuracy of 
reconstruction. The re-estimation of sparsity is based on the pre-estimation of sparsity. According to the 
experimental results, when the sparsity is greater than / 2M , the reconstruction is hard to succeed, so we can 
initialize H = / 2K M  and record the pre-estimated value of sparsity as LK . Then the dichotomy method is 
used to estimate the sparsity between LK  and HK  and the sparsity ( ) / 2H Lk K K= +  is used for trial. If 

( )2 2 22
1 / 1T

k K Ky yδ δ> + − ⋅Φ , there is >k K , and HK k=  is assigned. On the other hand. If 

( )2 2 22
1 / 1T

k K Ky yδ δ< − + ⋅Φ , there is k K< , and LK k=  is assigned at this time. Repeat the process, 
and the final value is the estimate. Experiments showed that the sparsity re-estimation step improved the 
reconstruction probability. 

3.3. Iterative Control 
Iterative step introduces the idea of backtracking and all candidates are evaluated at each iteration. In 

order to improve the iterative speed of the algorithm, a weak matching mechanism is adopted in the selection 
of the pre-selected set, and only the candidates exceeding the threshold value are selected to join the set. The 
selection conditions are as follows: 

[ ]
1 1

1,
,k k

j ll k
r Max rϕ ξ ϕ− −

∈
≥， ，                                                         (5) 

where iϕ  is the i-th element of Φ , 1kr − is the residual corresponding to iteration 1k −  in the iterative 
process, and ξ  is the filtering parameter. 

Setting a smaller ξ  allows you to select more candidates per search, which speeds up matching. 
However, it also increases the chance of picking up the wrong candidates. As the iteration goes on, if ξ  is 
fixed, the possibility of selecting the wrong candidate will increase. The wrong candidate will affect the 
residual, thus affecting the accuracy of reconstruction. Therefore, the value of ξ  needs to be controlled to 
reduce the possibility of false matches. Set a threshold 1 2

/y nε = , and when 2
r  is greater than the 

matching threshold 1ε , a smaller ξ  is adopted to speed up the residual matching. When 2
r  is smaller than 

the matching threshold, the selection parameter ξ  is gradually increased to reduce the number of selected 
candidates and improve the matching accuracy. Here, the value of parameter ξ  adopts the Linear 
monotonically increasing form: 

1
1

1
1

   
=   

  +   

k

k

r

l r

εξ
ξ

ξ ε

−

−

>


≤
 .                                                                (6) 

Through the reconstruction experiment of standard normal random numbers with different sparsity, it is 
found that the 2l -norm of residuals presented some certain rules with the increase of iteration times. As can 
be seen from Fig. 1, the 2l -norm of residual decreases gradually with the increase of iterations. In order to 
improve the reconstruction speed and optimize the parameter setting, threshold 1ε  is also adopted as the cut-
off point. When the residual’s norm 2

r  is greater than the threshold, the reconstruction speed is improved 
by using large step length. Otherwise, the small step is adopted to improve the reconstruction accuracy. 

As to the 100K =  curve in Fig. 1, the 2l -norm of residual rebounded when the number of iterations 
reached 50 due to the introduction of wrong candidates in the iteration process. Because of the backtracking 
mechanism, the curve drops rapidly after eliminating the wrong candidates. This phenomenon seldom occur 
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when the sparsity is small, but it often occurs when the sparsity is large. Therefore, in the case of good sparse 
conversion effect, using ( ) ( )1

2 2

k kr r −>  as the halting condition can avoid parameter setting and has little 

influence on reconstruction results. Otherwise, we set ( )
22

kr ε< to stop the iteration, which can improve the 
reconstruction success rate of the algorithm in the case of poor sparsity. 
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Fig. 1: Variation of  2l -norm during iteration. 

4. Simulation Results 
In this section, series of experiments are conducted to compare the simulation results of the proposed 

algorithm with other greedy algorithms. As a reconstruction algorithm, the recovery accuracy and recovery 
time are important parameters to measure the effect of the algorithm. To better evaluate the algorithm, the 
recovery success rate and recovery time of the proposed algorithm are compared with other algorithms later. 
Furthermore, the algorithm is tested on a real dataset. 

4.1. Success rate of Reconstruction 
By comparing with OMP, SP, CoSaMP, SAMP, SAGI [22] and other algorithms, the performance of 

DTSAMP algorithm can be verified. We define the value of /M N  as the measurement ratio, that is, the 
proportion of known data to all data. The reconstruction probabilities of the above algorithms are compared 
under different measurement ratios. In the reconstruction experiment, the original data x  and estimated data 
x̂  are compared. If 6

2
ˆ 10x x −− <  is satisfied, the reconstruction is regarded as successful. In the first 

experiment, we fixed the sparsity, changed the measurement M , and observed the reconstruction probability 
of various algorithms under different measurement ratios /M N . 

Fig. 2 (a) shows that the reconstruction probability of the algorithm increases with the increase of 
measurement ratio, but different measurement ratios have different effects on different algorithms. 
Compared with other algorithms, DTSAMP algorithm can reconstruct the missing data set at a lower 
measurement ratio. Especially when the measurement ratio is 0.25, only this algorithm can achieve 
reconstruction, so it has greater advantages at low measurement ratio.  
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(b) 

Fig. 2: (a) Prob. of exact recovery vs. the measurement ratio M/N. In this experiment, 400N = , 50K = .                  
(b) Prob. of exact recovery vs. the sparsity ratio K/N. In this experiment, 400N = , 200M = . 

Different from the laboratory, the sparsity of data is often unknown in practice. In some cases, the sparse 
matrix cannot complete the sparse representation of data well. Therefore, in order to evaluate the 
performance of missing data reconstruction, we also need to compare the adaptability of reconstruction 
algorithm to different sparsity under the same measurement value. In this experiment, we fixed the 
measurement, changed the sparsity K , and observed the reconstruction probability of various algorithms 
under different sparsity ratios /K N . 

 As can be seen from Fig. 2 (b), when the sparse ratio is greater than 0.275, only the proposed algorithm 
can complete the reconstruction of missing data. It can be seen that DTSAMP has a higher tolerance for 
sparsity when the number of measurements is fixed. With the same number of measurements, the missing 
data can be reconstructed with better robustness in a larger range of sparsity.  

The proposed algorithm is able to offer great advantages in reconstruction success rate over others, 
mainly due to its improvement in the estimation phase. As the backtracking idea in the SP algorithm is 
introduced in the estimation phase to enhance the support set selection, the accuracy of the estimation step is 
improved and the likelihood of introducing false candidates is reduced. 

4.2. Time of Reconstruction 
The computational complexity of different algorithms is compared below, and the average reconstruction 

time of various algorithms under different sparsity conditions is calculated with fixed measured values. 
According to the conclusion in Fig. 2 (b), some algorithms cannot complete the reconstruction of missing 
data sets when the sparsity is relatively high. In order to compare the reconstruction time, we only intercept 
the reconstruction time image when the sparsity ratio is less than 0.175. As shown in Fig. 3, when the 
sparsity of DTSAMP algorithm gradually increases, the reconstruction time does not show a steep upward 
trend, and the time curve is generally flat. At the same time, as the sparsity ratio increases, the reconstruction 
time curve of other algorithms becomes steep, and their reconstruction time quickly exceeds the DTSAMP 
algorithm. The proposed algorithm employs an estimation strategy that tamps the foundation of the initial 
iteration. It applies adaptive variable step size, which reduces the number of iterations considerably. The 
introduction of a weak matching mechanism reduces the time required for a single iteration. Therefore, 
greatly increases the running speed of the algorithm. 

Although SP and CoSaMP take less time under low sparsity, but they need to know the value of sparsity 
K  in advance. The proposed algorithm spend least time among the algorithms wihout knowing the sparsity. 
Therefore, this algorithm has great advantages in adaptability and computational complexity.  
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Fig. 3: Time of exact recovery vs. the sparsity ratio K/N. In this experiment, 400N = , 200M = . 

4.3. Real Dataset Test 
The FiveCitiePMData data set provides the PM2.5 data in Beijing, Shanghai, Guangzhou, Chengdu and 

Shenyang. Meanwhile, meteorological data for each city are also included. A total of 1416 humidity data in 
January and February of 2014 in Shanghai are selected. The DCT is chosen as the sparse representation basis, 
and the Boolean random matrix is used as the observation matrix. The value range of is [300,700]. 
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Fig. 4: (a) Mean absolute error (MAE) vs. the number of measurement M.                                                                                
(b) Time of exact recovery vs. the number of measurement M.  

As can be seen from Fig. 4, the mean absolute error (MAE) of the reconstructed data set decreases with 
the increase of the measurement values, since the amount of information obtained also increases with the 
increase of the number of measurements. However, DTSAMP algorithm has the smallest average error and is 
superior to other algorithms in recovery performance. Meanwhile, it is also shown that the running time of 
the DTSAMP algorithm is much lower than other algorithms, and the running time increases slowly with 
time. Experimental results conclusively show that sparsity estimation and step size control make DTSAMP 
algorithm have higher data reconstruction efficiency, and it has greater advantages in the case of large data 
set.  

5. Conclusion 
In this paper, compressed sensing theory is applied to interpolation of missing data, and a sparse adaptive 

reconstruction algorithm is designed. When the sparsity of missing data set is unknown, data interpolation 
can still be completed effectively. The algorithm is divided into two stages. In the sparsity estimation stage, 
the real sparsity is approximated exponentially, and then the sparsity closer to the real sparsity is obtained by 
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dichotomy method. In the iteration stage, the real value is gradually approached by changing the step size. 
We also control the number of candidates introduced when selecting the support set. Therefore, both speed 
and precision are taken into consideration. Experiments showed that the algorithm still has a high 
reconstruction ability even when a large amount of data is missing, so it is reliable for the reconstruction of 
missing data sets. 
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