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Abstract. Based on the predictive maintenance requirements of aero-engine Altitude Test Facility (ATF) 

equipment, a test equipment performance evaluation method (PCA-SPR) combining principal component 

analysis (PCA) and statistical pattern recognition (SPR) is proposed. It uses the PCA method to reduce the 

dimensionality of the equipment features, and recognizes the equipment status based on SPR. Then it defines 

the equipment health indicators based on the sample similarity theory, and achieves the quantitative 

evaluation of the equipment status. This paper takes the special control valve of ATF as the research object. 

Based on the simulation platform of the ATF flight environment simulation system, the valve performance 

degradation mode is studied and the valve degradation simulation is performed. The proposed PCA-SPR 

algorithm is applied to the valve performance evaluation to verify the applicability of the algorithm. 

Keywords: Altitude Test Facility, test equipment, performance evaluation, principal component analysis, 

statistical pattern recognition. 

1. Introduction 

The aero-engine Altitude Test Facility (ATF) is an indispensable tool for the development of advanced 

aero-engines and a strategic equipment for the development of aeroengine [1]. As an important part of the 

Altitude Test Facility, Altitude Test Facility flight environment simulation system occupies an important 

position in the entire high-altitude simulation test, and its equipment performance has an important impact on 

the altitude simulation test [2] In order to meet the test requirements of my country's new type of aviation 

power plants, it is urgent to carry out researches on the maintenance of test equipment for Altitude Test 

Facility flight environment simulation system and equipment performance evaluation. 

Predictive Maintenance (PdM) is a kind of active maintenance management based on the status of the 

equipment, and timely maintenance of the equipment through the analysis of the status of the equipment 

[3,4]. Compared with preventive maintenance, this type of equipment state-based predictive maintenance 

strategy better combines the real-time operating status of the equipment. The timing of preventive 

maintenance no longer only depends on engineering tradition and maintenance experience. It takes into 

account the actual operating status of the equipment, and takes appropriate maintenance measures before the 

equipment has no abnormalities or failures to reduce the probability of equipment failure. At the same time, 

the quantitative analysis is introduced into the decision-making process, which further increases the scientific 

and reasonable decision-making [5]. Predictive maintenance has been extensively studied in the field of 

industrial equipment such as bearings [6], blades [7], and drive motors [8]. Applying the concept of 

predictive maintenance to Altitude Test Facility flight environment simulation system equipment 

maintenance and equipment performance evaluation is of great significance for improving the intelligence 

level of my country's test equipment. 

Principal components analysis (PCA) is one of the most widely used data dimensionality reduction 

algorithms. It transforms high-dimensional features into low-dimensional features by reconstructing features, 

and has important applications in equipment performance evaluation [9]. Statistical Pattern Recognition 

(SPR) is a basic pattern recognition method. Statistical pattern recognition is a method of statistical 
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classification of patterns, that is, the technique of pattern recognition combined with the Bayesian decision-

making system of statistical probability theory, also known as the method of decision theory recognition [10]. 

By combining the PCA method with statistical pattern recognition, equipment performance evaluation can be 

achieved, and the current performance status of the equipment can be quantified, which can lay the 

foundation for subsequent equipment prediction and remaining life estimation [11]. This paper combines the 

PCA-SPR method and applies it to Altitude Test Facility flight environment simulation system equipment 

performance evaluation, quantifies the state of the Altitude Test Facility test equipment, and provides a basis 

for the predictive maintenance of Altitude Test Facility equipment in the future. 

2. PCA-SPR-based Equipment Performance Evaluation Method 

2.1. Principal Component Analysis 

The feature vector of the device may have a high-dimensional nature, and some of the feature vectors are 

very related, resulting in duplication of information. Using PCA to perform feature dimensionality reduction 

on equipment features can reduce data redundancy, improve data utilization efficiency, simplify processing, 

and at the same time ensure the accuracy of the dimensionality reduction results.  

Assume that the initial characteristic data set of the test equipment is: 

 1 2 1
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i k m k m k i
X x x x x x x

− − +
=                                                          (1) 

Normalize the initial feature vector, then perform projection transformation on the sample, and get the 

new coordinate system, abandon part of the coordinates based on the new coordinate system and reduce the 

dimension to, then the projection of the sample in the low-dimensional coordinate system can be obtained. 

Perform eigenvalue decomposition on the covariance matrix to obtain the eigenvalue: 

( )1 2, , , , , ,k m k n     −=                                                              (2) 

Assuming that the reconstruction threshold  , select the maximum value that satisfies the condition to 

sort the eigenvalues, then the eigenvectors related to the eigenvalues after dimensionality reduction can be 

obtained as 
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2.2. Statistical Pattern Recognition 

The equipment evaluation method based on statistical pattern recognition mainly includes two steps: 

equipment status recognition and equipment health assessment. Based on statistical pattern recognition, it 

can realize the status recognition of Altitude Test Facility test equipment, and determine the "good" and 

"bad" status of the test equipment; quantify the status of the test equipment based on the sample similarity 

theory, and realize the performance evaluation of the equipment status. 

(1) Equipment status recognition based on statistical pattern recognition 

Equipment state recognition is to use Bayesian decision rules to classify a given state pattern into the 

corresponding pattern class. The likelihood rate is defined as the standard for state classification. The 

derivation process of equipment state recognition is as follows. 

Assume that the limited equipment status categories are: 

 1 2
, , ,
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                                                                             (4) 

The feature vector of the device state mode is: 
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Map the device data set to the device state category space ( 1, 2, , )
i

i C =   according to the decision rule. 

If the device data set is in, 
i

  then the device state is considered to belong to the category i . If ( )
j

p   
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represents the prior probability when a certain device state is in 
j

 , ( )
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p X∣  represents the conditional 

probability density in state X. For the two device states 1 and, 2 ,if 1X ,then 
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Among them, ( )
r

l X is the likelihood rate, and this parameter is used as a criterion for selecting the device 

state. If the likelihood rate corresponding to an existing category is greater, it means that the current position 

state X can be considered as belonging to the category. 

(2) Equipment performance evaluation based on sample similarity theory 

After the equipment status is recognized, the equipment status category space is estimated based on the 

equipment status samples, and then the equipment status samples can be input for equipment health 

assessment. The concept of measuring the similarity between samples is used to quantify the performance of 

the equipment, and the health index (HI) of the equipment is defined to describe the performance of the 

equipment. 

Assuming a multivariate Gaussian distribution: 

~ ( , )X MVN K                                                                          (7) 

At the same time, the eigenvalues of multiple parameters after dimensionality reduction are obtained, 

and the weight ratio of the parameters can be calculated according to the eigenvalues. Assuming that the 

device's health parameter is 1 in the initial situation, the device health parameter index corresponding to the 

current device state sample can be defined as: 

2
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In formula (8), 
i
  is the eigenvalues of each parameter after dimensionality reduction; ix is standardized 

parameters; s is sensitivity multiplier; p is degrees of freedom after dimensionality reduction; H is the health 

indicator of the equipment. For the calculation of health indicators of multi-dimensional parameters, the 

weight ratio of the multi-dimensional parameters is obtained by calculating the characteristic values of the 

multi-dimensional parameters, and these dimensionality-reduced parameters are converted into health 

indicators according to the weight ratio and statistical law. 

2.3. PCA-SPR-based Equipment Performance Evaluation Steps 

Figure 1 shows the steps and process of the performance index prediction of test equipment based on 

PCA-SPR. The process mainly includes two parts. The first part is the dimensionality reduction of equipment 

parameters. By reducing the dimensionality of the data, the complexity of subsequent health index 

calculations is reduced, and at the same time, the parameters that have more important effects on each test 

equipment can be analyzed. The second part is the introduction of health indicators, and the calculation of 

the weight ratio of each parameter in combination with the characteristic values, and finally the practice 

sequence of equipment health indicators, which lays a data foundation for the subsequent prediction of the 

practice sequence based on the health indicators of the test equipment. 

The specific steps for calculating specific health indicators are as follows: 

①Through the analysis and equipment operation mechanism, the characteristic parameters related to 

equipment performance degradation are obtained, and this parameter is used as the input of the data 

set. 

②Perform PCA dimensionality reduction processing on the data. First standardize the input data, then 

calculate the covariance matrix of the input data, calculate the eigenvalues of the covariance matrix, 

sort based on the eigenvalues, select a certain number of reduced-dimensional parameters according 

to certain threshold setting rules, and finally get the principal component after dimensionality 

reduction. 
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③Introduce the calculation formula of the equipment health index, and determine the weight ratio of the 

characteristic parameter according to the characteristic value of each parameter after dimensionality 

reduction. According to the weight ratio of each parameter, the final one-dimensional health index is 

obtained, and finally output the health index. 

3. Altitude Test Facility Flight Environment Simulation System 

3.1. Flight Environment Simulation System 

The Altitude Test Facility flight environment simulation system establishes the engine's intake and 

exhaust environment conditions at different flight altitudes and Mach numbers by adjusting the engine intake 

pressure,  

PCA Dimensionality 

reduction

Data standardization

Calculate the covariance 

matrix

Calculate the eigenvalues 

Eigenvalue ordering

Feature value filtering 

Calculate the proportion of weight 

Get equipment health indicators

Get the principal 

component

Data Set

Output equipment health indicators

Calculation formula

2

2

1

( ) 1
p

p

i i

i

H X F s x



=

 
= −  

 


Equipment health 

index calculation

 

Fig. 1: PCA-SPR-based performance evaluation process 
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Fig. 2:  Schematic diagram of ATF flight environment simulation system 

temperature, and test chamber environmental pressure. The system consists of Pb1 system, Pb2 system, Pc 

system and Pd system, the schematic diagram of Altitude Test Facility flight environment simulation system 

is shown in Figure 2. The Altitude Test Facility flight environment simulation system establishes the engine's 

intake and exhaust environment conditions at different flight altitudes and Mach numbers by adjusting the 

engine intake pressure, temperature, and test chamber environmental pressure. The system consists of Pb1 

system, Pb2 system, Pc system and Pd system, the schematic diagram of Altitude Test Facility flight 

environment simulation system is shown in Figure 2. 

Pb1 system and Pb2 system are pressure control systems of pressure stabilizing chamber, which are 

controlled by V1 and V2 regulating valves; Pc system is the engine intake pressure and intake temperature 

control system, which is controlled by V3 and V4 regulating valves. V3 valve controls the intake pressure 

and V4 valve controls the intake temperature. Pd system is the engine exhaust environment pressure control 

system, which is controlled by V5 regulating valve. The engine exhaust pressure is established during 

altitude simulation test to simulate the flight altitude of aeroengine. V8 and V9 valves assist in regulating the 

altitude cabin pressure and temperature. 
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3.2. Flight Environment Simulation System Model  

Figure 3 is the overall model of the Altitude Test Facility flight model simulation system simulation 

platform under MATLAB/Simulink.  
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Fig. 3: Altitude Test Facility flight environment simulation system simulation platform 

The whole platform can be divided into 8 parts; the part ① is the environmental condition calculation 

module; the part ② is the pressure and temperature setting module; the part ③is the module for generating 

intake and exhaust temperature and pressure control commands; the part ④ is the intake valve module, 

including five regulating valve flow models V1, V2, V3, V4, and V5; the part ⑤ is Pb1, Pb2, and Pc three 

pipe cavity model; the part ⑥ is the engine flow calculation model and the high-altitude cabin pressure 

setting module; the part ⑦ is the high-altitude cabin pressure control command generation module; the part 

⑧ is the V8 and V9 two regulating valve flow models and Pd pipe cavity model. 

In order to verify the control capability and flight test simulation capability of the flight environment 

simulation system, simulation tests are designed with real engine test projects (level flight acceleration test, 

equal Mach number climb test) to verify the versatility of the platform. The first is the level flight 

acceleration test phase: assuming that the engine is maintained at a flying altitude of 5km, the flying Mach 

number is uniformly accelerated from 0.5 to 0.9 within 1 min, and then the flying Mach number is kept 

unchanged at 0.9. Then proceed to the equal Mach number climb test stage: assuming that the engine's flying 

altitude climbs from 5km to 8km within 1min, and then keeps the altitude unchanged at 8km, the entire test 

simulation process lasts for 5min. 

Combined with the schematic diagram of the Altitude Test Facility flight environment simulation system 

shown in Figure 2, a dual-channel PID controller is designed to control the intake temperature and pressure 

during the entire test process. Figure 4 is the temperature and pressure control effect diagram of the entire 

Altitude Test Facility flight environment simulation system. 

 

(a) Intake pressure                                               (b) intake temperature 

Fig. 4:Intake pressure and intake temperature control effect 
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It can be seen from figure 4. that the flight environment simulation system can track changes in engine 

intake pressure and intake temperature to meet the needs of platform simulation and simulation. 

4. PCA-SPR Algorithm Simulation Verification 

The Altitude Test Facility flight environment simulation system contains numerous subsystems and test 

equipment. During the working process of the test equipment, due to vibration, shock, changes in cold and 

heat, aging and other factors, each test equipment is prone to various performance degradation and failures. 

This paper analyses and simulates the relevant parameters and typical failure modes of the Altitude Test 

Facility V3 control valve, simulates the performance degradation process of the valve, and lays a data 

foundation for the subsequent PCA-SPR-based valve state evaluation. 

4.1. Analysis of Valve Performance Degradation Mode 

Degradation of valve performance will affect valve characteristic parameters. By analyzing the changes 

in valve characteristic parameters, valve performance evaluation can be achieved. The characteristic 

parameters related to the V3 valve are shown in Table 1. 

For Altitude Test Facility special control valve internal leakage and external leakage are the main decline 

situations, internal leakage can be simulated by increasing the flow coefficient to simulate this failure. The 

empirical formula for decay simulation of internal leakage is shown in equation (9). 

( )min 1, (1 0.1 )
f N

v v
K K f= +                                                                  (9) 

f

v
K  is final flow coefficient; 

N

v
K  is theoretical discharge coefficient; f  is degradation intensity. The 

change trend of degradation intensity directly determines the predicted result. Engineering practice has 

proved that the exponential function has good performance in the characterization of degradation law. 

Table 1: V3 valve characteristic parameters 

Parameter 

name 
Parameter label Parameter name Parameter label 

Parameter 

name 

Parameter 

label 

Main valve 

position 
V3 

Vice valve 

position1 
V31 

Front pressure 

of valve 
P1 

Vice valve 

position 2 
V32 

Vice valve 

position 3 
V33 

Pressure after 

valve 
P2 

Mixer outlet 

pressure 
Pm 

Mixer outlet 

temperature 
Tm   

The exponential regression function of the valve degradation intensity used in this paper is: 

e ib t

if a


=                                                                              (10) 

ia and ib two coefficients of exponential fitting. Setting the simulation degradation intensity to 0, 0.1 and 

0.15 respectively, establish the valve performance degradation model, inject the above two valve degradation 

modes into the simulation platform, set the simulation time to 5000s, and run the simulation platform during 

a certain engine test run to obtain the valve The degraded simulation result is shown in Figure 5. 

The degradation factor f is changed according to the exponential degradation law of equation (10), and 

the simulated degradation factor is changed from 1 to 0.18, and 1000 sets of valve parameter data under 

different degradation conditions are obtained. Each set of valve data under degraded conditions includes 10 

parameters under different degraded conditions in Table 1, and the number of simulation steps for each set of 

data is set to 5000, that is, each set of valve performance degradation contains data. 
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Fig. 5: Leakage simulation in V3 valve Fig. 6: V3 valve main component ratio  

4.2. Valve Status Recognition Based on PCA-SPR 

For the 10 characteristic parameters listed in TABLE 1, the PCA method is used to reduce the 

dimensionality of the 10 characteristic parameters. When the reconstruction threshold meets 95%, the 

dimensionality can be reduced to obtain 5 valve performance parameters. The sorting result of the principal 

component proportion of the V3 valve is shown in Figure 6. The parameter labels in Figure 6 are consistent 

with the parameter labels in TABLE 1, and finally the characteristic parameters of the V3 valve after 

dimensionality reduction are obtained: 

 3 2 1
i

X V P P T Q= 、 、 、 、                                                                  (11) 

Four sets of valve performance degradation data are selected, and the data contains 5 valve characteristic 

parameters after dimensionality reduction. Four sets of data are injected with different valve degradation 

factors through the model, and calculated by the method of statistical pattern recognition based on the main 

components of the valve obtained by screening. Likelihood rate, and then calculate the health index (HI) of 

these four kinds of degradation valve, the injected degradation factor and the calculated health index are 

shown in Table 2. 

In Table 2, the degeneration factors of the first and the second group injected are similar, and the 

degeneration factors of the third and the fourth groups are similar. The health indicators of the first and the 

second groups calculated by the PCA-SPR method are similar, and the health indicators calculated by the 

third group and the fourth group are similar. At the same time, there is a certain correspondence between the 

health indicators of the two control groups and the degradation factors, and the results verify the correctness 

of the PCA-SPR method. 

Table 2: Health indicators under different degradation factors 

Group Degradation factor f Health indicators HI 

First group 0.2 0.8134 

Second Group 0.21 0.8029 

Third group 0.5 0.5324 

Fourth group 0.51 0.5217 

5. Conclusion 

Through this study, the following conclusions are obtained: 

(1) Aiming at the performance evaluation of the Altitude Test Facility test equipment, a method based 

on the combination of principal component analysis and statistical pattern recognition (PCA-SPR) is 

proposed, and the characteristic control valve of the Altitude Test Facility is used as an example to 

verify. The results show that the method can realize the equipment Accurate evaluation of 

performance. 
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(2)Aiming at the Altitude Test Facility flight environment simulation system, a real engine test process 

was designed to verify the control effect of the flight environment simulation system; at the same 

time, the typical models of the Altitude Test Facility equipment performance degradation were 

analyzed and the equipment performance degradation simulation was carried out. 

(3) According to the obtained equipment health indicators, the users can grasp the equipment 

performance status and understand the decline of the equipment, which can help construct the 

remaining maintenance life prediction model of the equipment, and help develop the equipment 

predictive maintenance strategy that is more in line with the actual situation and reduce the equipment. 

The cost of maintenance improves equipment safety. 
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