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Abstract. In the high-speed drilling process of multilayer printed circuit boards, various drilling parameters 

and drill wear directly affect the quality of the hole-drillings, which ultimately affects the performance and 

yield of multilayer printed circuit boards. The hole quality of multi-layer printed circuit boards mainly 

includes multiple indicators such as hole wall roughness, hole position accuracy and nail head thickness. This 

study adopts a multi-output support vector regression model to establish a correlation model between drilling 

parameters, drill wear and the hole quality of multilayer printed circuit boards, so as to realize the prediction 

of the hole-drilling quality under the conditions of variable drilling parameters and different drill wear, and 

the differential evolution algorithm is used to optimize the model parameters. The experimental data of 

drilling multilayer printed circuit boards with variable drilling parameters show that: the adopted multi-

output support vector regression model has higher prediction accuracy and stronger robustness compared 

with other commonly used multi-output regression models, which lays the foundation for the hole-drilling 

quality control of multilayer printed circuit boards. 

Keywords: multilayer printed circuit boards drilling, drill wear, various drilling parameters, multi-output 

support vector regression, hole quality prediction 

1. Introduction 

Drilling is an important processing procedure in the manufacturing process of multilayer printed circuit 

boards (PCB), and the hole-drilling quality will directly affect the final performance of the PCB [1]. There 

are many indicators for evaluating the hole quality of PCB, among which the main ones are hole position 

accuracy, hole wall roughness, nail head thickness, hole diameter tolerance and burr height, etc. [2]. Because 

the PCB is a fiber-reinforced layered composite material containing copper foil and resin, and the drill has a 

small diameter, low rigidity, small chip holding space, and poor cutting stability, the drill wear continues to 

accumulate with the drilling process, which affects the hole-drilling quality [3]. Moreover, in the high-speed 

drilling of multilayer PCB, the changes of drilling parameters will also have an important influence on the 

quality of hole-drillings [4,5]. Therefore, there is a complicated non-linear relationship between drill wear, 

drilling parameters and hole-drilling quality indicators. Through the establishment of PCB hole-drilling 

quality prediction and control model, the processing quality and processing efficiency can be effectively 

improved. 

In recent years, a lot of research works have been conducted on the prediction of machining quality. 

Yeganefar et al. [6] used the support vector machine and neural network to predict and optimize the surface 

roughness with variable milling parameters. Pimenov et al. [7] took tool wear, processing time and cutting 

power as input, and adopted random forest model to predict the milling machined surface roughness. Jitesh 

et al. [8] collected multi-sensor signals during drilling and developed an adaptive neuro fuzzy inference 

system model using different time domains and wavelet packet features to predict the hole roundness error. 

The above research used machine learning methods to effectively predict the processing quality. However, 

these methods are single-objective prediction models. In the high-speed drilling of multilayer PCB, there is 

more than one hole-drilling quality evaluation index, and they have a coupling relationship, so it is necessary 
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to construct a nonlinear multi-objective prediction model. The artificial neural network (ANN), which is one 

of the typical machine learning algorithm, simulates the input-output relationship through multi-layer neuron 

connections with reference to the neural network structure of the human brain. It has obvious advantages in 

processing nonlinear data [9], but model construction requires a large amount of data, and the generalization 

ability is poor. Support vector machine (SVM) is a commonly used non-linear data classification and 

regression machine learning algorithm, especially dealing with small sample data and high-dimensional 

problems, and has stronger generalization ability than other algorithms [10]. However, the traditional support 

vector machine algorithm is only suitable for regression model of single output system. For multi-output 

nonlinear data, the common method is establishing a regression model for each dimension, and then simply 

synthesize it without considering the coupling relationship between the output variables, the accuracy of 

which is not high [11]. 

To solve the above problems, this paper studies a multi-output support vector regression (MSVR) model 

by using experimental data, and adopts the differential evolution algorithm (DE) to optimize the model 

parameters, and finally establish a multi-objective prediction model for the hole-drilling quality of multilayer 

PCB. The prediction results are compared with other multi-output regression models to verify its 

effectiveness. 

2. Multi-objective prediction model for drilling hole quality of multilayer PCB 

Multi-layer PCB hole-drilling quality control is mainly divided into two parts: one part is the monitoring 

of drill wear, including signal acquisition, feature extraction and selection, and monitoring model 

establishment; the second part is the establishment of prediction model for hole-drilling quality based on the 

value of drill wear obtained by monitoring and drilling parameters. Online hole-drilling quality control 

through threshold judgment is finally achieve, the diagram of which is shown in Fig. 1. This article mainly 

focuses on the second part of drilling quality monitoring of multilayer PCB. The hole-drilling quality 

indicators used are hole position accuracy, hole wall roughness and nail head thickness. The feasibility of the 

proposed method is explored. The values of drill wear are obtained from off-line observations in an 

orthogonal experiment. 

 
Fig. 1: Diagram of hole quality control for multilayer PCB. 

2.1. Multi-objective prediction method for drilling hole quality 

This study proposes a method for predicting the hole-drilling quality of multilayer PCB based on MSVR. 

The method uses tool wear and drilling parameters (spindle rotation speed and feed rate) as inputs and multi-

output support vector regression algorithm for data-driven intelligent prediction modeling, and also uses DE 

algorithm to find the optimal parameters of MSVR. The specific steps are as follows: Firstly, the drilling 

parameters and test plan are designed for multilayer PCB drilling experiments. Secondly, the drill wear 

VB(X1), drilling parameters including spindle rotation speed n(X2) and feed rate f (X3) are collected, and 

drilling state parameter set X={X1, X2, X3} is achieved. In addition, drilling quality including hole accuracy 

Cpk (Y1) and hole wall roughness Rmax (Y2), nail head thickness b (Y3) are observed and recorded, and 

drilling quality parameter set Y={Y1, Y2, Y3} is achieved. The prediction model dataset {X, Y} is obtained. 

Thirdly, the normalization process is performed to normalize the data to within the interval [0,1] to obtain the 

normalized dataset {X', Y}. The cross-validation method is used to divide the training set {Xtrain, Ytrain} and 
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the test set {Xtest, Ytest}. Finally, the training set data are modeled by MSVR, while the DE algorithm is used 

to optimize the model parameters to obtain the trained prediction model. And the test data {Xtest, Ytest} are 

input into the trained prediction model to verify the validity of the model. 

2.2. Multi-output support vector regression model 

Multi-output support vector regression model is established as follows. The modeling sample set 

(training set) is {Xtrain, Ytrain}={(Xi, Yi)| Xi ∈ R
m
, Yi ∈ R

n
, i=1,2,… ,l}, where m and n denote the 

dimensionality of the input and output vectors respectively, and l is the sample size. The regression function 

between the input data and the output data is established as: 

   i i if  Y X XW B                                                                         (1) 

where W = [W1 W2 … Wn]
T 

is the output weight, B =[b1 b2 … bn]
T 

is the vector of bias coefficients. The 

typical SVR defines an insensitive zone around the estimate, while the MSVR defines a hyper-spherical 

insensitive zone [12]. The cost function is defined as follows: 
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where ε is the hyper-spherical insensitive zone. The objective function and of the multi-output support vector 

regression model are: 
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the regularization and the error reduction term. Then, Lagrange multipliers αi are introduced and the 
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According to Karush-Kuhn-Tuker Theorem (KKT conditions), partial derivatives of L(W, B) with 

respect to W j, bj, ui, and αi are equal to 0, the equation is obtained: 
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where  
T

1 2( ), ( ), , ( )l X X X    , Dα=diag{α1 α2 … αl}, α= [α1 α2 … αl]
T
, I =[1 1 … 1]

T
. W j is denoted as a linear 

combination of the feature space: 
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The above equation can be expressed as: 
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where   T

, , ( ) ( )i j i j i jK  X X X X  . The output can be expressed as: 
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The target of MSVR is transformed into finding the best β and b. Then the iterative method is adopted to 

solve the problem. 

3. Multilayer PCB drilling experiments 
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3.1. Experimental design 

The PCB boards used in the experiments are NP140 with thickness of 1.60 mm. The drill is double-

edged carbide drill with diameter of 0.3 mm. The experiments were conducted on a six-axis high-speed 

drilling machine (HITACHI, maximum speed 160,000r/min), as shown in Figure 2. In order to observe the 

quality of the machined hole internal surface, the slices of the machined hole were first made, then ground 

and polished, and observed using a metallographic microscope (LEICA DM 2500M). An automatic optical 

hole position inspection machine was used to measure the hole position accuracy which is indicated by Cpk. 

The smaller the Cpk, the lower the hole position accuracy. A microscope (Nikon L-IM 0643613) was used to 

observe the wear on the back face of the drill (maximum width of wear band VB). 

 
Fig. 2: High-speed drilling experiment setup. 

Drilling parameters used in the experiment are shown in TABLE I. For each set of experiments with 

various drilling parameters, a full life machining test of the drill was performed, and values of VB were 

measured every 1000 holes and recorded. In addition, for every 1000 holes drilled in the experiment, five 

holes were drilled to measure the hole wall roughness Rmax, nail head thickness b and hole position accuracy 

Cpk, and the average of the measurements was calculated as the final value. 

Table 1:  Drilling parameters used in the experiment 

Test number Spindle rotation speed, n / (krpm) Feed rate, f / (mm/s) 

1 100 20 

2 100 30 

3 100 40 

4 125 20 

5 125 30 

6 125 40 

7 150 20 

8 150 30 

9 150 40 

3.2. Experimental Results 

Due to the hard and brittle glass fiber and resin composite in the PCB, the flank and the cutting edge of 

the drill are subjected to friction and impact during the drilling process of the PCB, resulting in progressive 

drill wear. When drill wear reaches a certain value, the drill should be changed to ensure the hole-drilling 

quality. The drill wear on the chisel edge and main cutting edge has a triangular shape, and is increased with 

hole-drilling number increasing, which is shown in Fig. 3. The observed hole wall roughness Rmax and nail 

head thickness b and hole position accuracy Cpk are shown in Fig. 4(a), (b) and (c). 

The effects of the hole number, feed rate and spindle rotation speed on the hole-drilling quality are 

shown in Fig. 6(a), (b) and (c). From Fig. 4 and Fig. 5(a), it can be seen that the hole wall roughness (Rmax) 

increases with the hole-drilling number (drill wear) and feed rate increasing, and the unevenness of hole 

sidewall occurs mainly at the junction of glass fiber and resin. This is due to the fact that the cutting edge of 

the drill becomes less capable of cutting the glass fiber, and the glass fiber is pushed to break and fall off, 

which increases the hole wall roughness. The increase of feed rate causes the increase of cutting force, and 

the glass fiber breaks after the force exceeds the elastic limit, which also leads to the increase of hole wall 

roughness. The effect of spindle rotation speed on hole wall roughness has no obvious pattern. From Fig. 4 
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and Fig. 5(b), it can be seen that the nail head thickness (b) increases with the increase of drill wear, which is 

due to the extrusion of copper foil to the top and bottom after the drill is dulled. When the spindle rotation 

speed is constant, the thickness of nail head decreases with the increase of feed speed, which is because the 

cutting speed becomes faster and the cutting temperature is lower, and the copper foil is not easily extruded. 

There is also no obvious rule for the spindle rotation speed on the nail head thickness. From Fig. 5(c), it can 

be seen that the hole position accuracy (Cpk) decreases with the increase of drill wear, which is because and 

the location of entering drilling becomes difficult. When the spindle rotation speed is constant, the hole 

position accuracy increases with the increase of feed rate, which is because the drill becomes easier to enter 

drilling. There is also no obvious law on the effect of spindle rotation speed on the hole position accuracy. 

 
Fig. 3: The relationship between the hole-drilling number and drill wear. 

 
Fig. 4: The hole-drilling quality. 

In conclusion, the influence of drill wear and feed rate on hole-drilling quality is regular and linear, yet 

the influence of spindle speed on drilling quality is unknown. Furthermore, the influence between different 

indicators is coupled, so there is a non-linear mapping relationship between drilling parameters, drill wear 

and hole-drilling quality. Therefore, the accurate description of the mapping relationship is the key to 

construction of the prediction method for hole-drilling quality. In order to realize the multi-objective hole-

drilling quality control of multilayer PCB, MSVR is used for the establishment of the multi-objective 

prediction method. 

 
(a) Effect of hole quantity, feed rate and spindle rotation speed on hole wall roughness 
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(b) Effect of hole quantity, feed rate and spindle rotation speed on nail head thickness 

 
(c) Effect of hole quantity, feed rate and spindle rotation speed on hole position accuracy 

Fig. 6 Drilling hole quality influencing factors 

3.3. Method Validation 

Since there is a nonlinear mapping relationship between drilling parameters, drill wear and hole-drilling 

quality, and the drilling quality index is multidimensional, a multi-output support vector regression model is 

used for regression modeling. Since the drilling parameters (feed rate and spindle rotation speed) and drill 

wear have different magnitudes, the data are first normalized to the interval [0,1] for all input data, thus 

ensuring a higher accuracy output. 

min

max min

i
i

x x
x

x x


 


                                                                      (9) 

where xi' is the normalized value of the i-th sample; xi is the original value of the sample; xmax is the 

maximum value of sample; xmin is the minimum value of sample. 

In this paper, the linear kernel function, polynomial kernel function and radial basis kernel function are 

commonly used in support vector machines for model building. The support vector machine realizes the 

mapping of the input space to the high-dimensional Hilbert space through the kernel function, so the choice 

of the kernel function type is particularly critical. This article used the linear kernel function, polynomial 

kernel function and radial basis function (RBF) kernel to build the model. It was found that the final training 

results of the model established by the linear kernel function and the polynomial kernel function could not 

converge, so the radial basis function kernel was finally selected as the kernel function of the multi-output 

support vector regression model: 
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X X
X,X exp

2

i

j iK
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  
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where σ is the hyperparameter of the RBF kernel, which defines the feature length scale for learning the 

similarity between samples. 

The parameters have a great influence on the generalization performance of the model. When the penalty 

factor C is too large, the generalization performance of MSVR will be reduced. In contrast, a too small value 

of C will increase the training error. Additionally, the larger the hyperparameter σ, the larger the training 

error. Nevertheless, a too small value of σ will lead to the model overfitting. In this paper, a DE algorithm is 

used to find the optimal model parameters, and the optimal penalty factor C=100 and the optimal 

hyperparameter σ=0.1. The regression results obtained and actual experimental results are shown in Fig. 
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6(a)-(c). It can be seen that the errors between the predicted and experimental values of hole wall roughness 

and nail head thickness are small, while the errors of hole position accuracy Cpk are slightly larger. 

Additionally, more stable and accurate predictive results are achieved compared with results of establishing a 

regression model for each dimension because the coupling relationship between the outputs is considered. 

 
 (a) Experimental and predictive values of hole wall roughness 

 
(b) Experimental and predictive values of Nail head thickness 

 
（c）Effect of hole quantity, feed rate and spindle rotation speed on hole position accuracy 

Fig. 6 Drilling hole quality influencing factors 

3.4. Comparative analysis 
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To further analyze the advantages of the MSVR model, the MSVR model is compared with other multi-

output machine learning regression algorithms like Linear Regression (LR), K-Nearest Neighbours 

Regression (KNNR), Classification and Regression Tree (CART), and Random Forest Regression (RFR). In 

this paper, the root mean square error (RMSE) and mean absolute percentage error (MAPE) are used as 

model evaluation indexes to compare the results of different models. A smaller RMSE means a better model 

prediction performance, and a smaller MAPE means a better model prediction performance. 

 
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n

i i

i

Y Y
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                                                              (11) 
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where n denotes sample size; Yi is the i-th sample value; ˆ
iY is the predictive value of the model. 

Table 2:  Comparative analysis 

Algorithm 
Rmax b Cpk 

RMSE MAPE RMSE MAPE RMSE MAPE 

MSVR 0.099 0.863 0.103 0.188 0.092 4.659 

LR 1.722 11.16 3.898 5.878 0.253 9.919 

KNNR 1.479 10.2 3.911 5.893 0.236 10.52 

RFR 0.674 4.769 1.593 2.456 0.1 4.056 

As can be seen from TABLE II, the RMSE values of 0.099, 0.103 and 0.092 at hole wall roughness and 

nail head thickness and hole accuracy of MSVR model are smaller than the results of other algorithms. The 

MAPE values of 0.863 and 0.188 at hole wall roughness and nail head thickness are also much smaller than 

other models, and the value of 4.659 at hole accuracy is only slightly larger than 4.056 of RFR. In conclusion, 

MSVR has better predictive performance. 

4. Conclusion 

In order to realize hole-drilling quality control of multilayer PCB, this paper firstly studies the influence 

of drilling parameters and drill wear on hole-drilling quality. Then, a multi-output support vector regression 

model is established, and the predictive results are compared with other multi-output machine learning 

algorithms. The following conclusions are drawn from this work: 

(1) The effects of drill wear and feed rate on hole wall roughness, nail head thickness and hole position 

accuracy are linearly related, while the effects of spindle rotation speed on those have no obvious pattern. In 

the process of multilayer PCB drilling, there is a non-linear mapping relationship between drilling 

parameters, drill wear and hole-drilling quality. 

(2) The RBF kernel is selected as the kernel function of MSVR and the model parameters are optimized 

by the DE algorithm. The MSVR prediction errors of the hole wall roughness and nail head thickness are 

small and the prediction error of the hole position accuracy (Cpk) is relatively larger. 

(3) RMSE and MAPE are selected as the model evaluation indexes, and the predictive results are 

compared with linear regression model, K-nearest neighbor regression model and random forest regression 

model, which shows that MSVR has a better prediction performance. 
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